
1.  Introduction
Extreme precipitation (EP) is the main cause of floods, urban waterlogging, debris flow, and soil erosion, which 
threaten the safety of millions of people life and the development of the economy (Nie & Sun,  2021; Tang 
et al., 2021; Zou & Ren, 2015). In recent years, the intensity and frequency of EP have significantly increased in 
most parts of China (Ng et al., 2021; Tang et al., 2021; Zhao et al., 2020). However, as a key region of intense 
land-atmosphere interaction, water cycle, and energy balance, the EP over Tibetan Plateau (TP) and adjacent 
areas have been rarely studied due to sparse observation (Chen, 2022; Luo et al., 2016; Xiao et al., 2016).

In September 2011, an EP induced the outburst of Zonag lake, which caused the flood and the interception of 
the migration path of lambing over the south of the lake (Pei et al., 2019). Moreover, during 11–20 August 2020, 
an EP in Sichuan province directly engendered suffering for 8.523 million people, among which 58 sadly died 
and 13 were recorded as missing (Qian et al., 2022). The regional EP with much larger coverage than the local 
EP brings serious disaster (Ng et  al.,  2021). Consequently, revealing the generation/development mechanism 
of regional EP and improving its prediction/risk-evaluation ability are crucial for ecological and environmental 
protection, water resource utilization, and climate change adaptation (Tang et al., 2021; Zhao et al., 2020).
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deepen our recognition and understanding of EP formation. The predominant synoptic patterns associated with 
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Basin (SCB) have been systematically identified. Results show the summer RHEPE over CETP and SCB 
are dominated by the background large-scale circulations featured by the configuration of eastward-extended 
South Asia high (SAH) and westward-extended Western North Pacific Subtropical High (WNPSH) and 
their northward advance, except for that an obvious low-level vortex imbedded in the background large-scale 
circulations is mainly responsible for the summer RHEPE over SCB. The frequency and intensity of the total 
summer RHEPE over CETP and SCB all show an obvious increasing trend during 2000–2020, which is largely 
contributed by the synoptic pattern characterized by the configuration of eastward extended SAH and westward 
extended WNPSH.

Plain Language Summary  To completely indicate the synoptic patterns leading to the summer 
regional hourly extreme precipitation events (RHEPE) over the central-eastern Tibetan Plateau (CETP) and 
Sichuan Basin (SCB), this study has identified the dominant synoptic patterns of summer RHEPE over the 
two regions. Results show that the configuration of eastward extended South Asia high (SAH) and westward 
extended Western North Pacific Subtropical High (WNPSH) and their northward advance dominates the 
prime circulation patterns of summer RHEPE over CETP and SCB. However, in addition to the opposing 
motion of the SAH and WNPSH, a low-level vortex imbedded in the background large-scale circulations is 
mainly responsible for the summer RHEPE over SCB. The findings of this study may help us to deepen our 
understanding of the RHEPE formation over the two regions with complex terrain and provide a base to further 
improve the prediction of extreme precipitation.
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The EP over Central-eastern Tibetan Plateau (CETP) and Sichuan Basin (SCB) in summer significantly shows 
a diurnal variation, it begins in afternoon (early evening) and peaks in early evening (midnight) (Li, 2018; Zhao 
et al., 2020). Hence, the intensity and amount of EP over the CETP and SCB are stronger at night than in daytime 
(Li, 2018; Zheng et al., 2019). In addition, the duration of EP events over CETP and SCB in summer is less than 
10 hr (Li, 2018; Li et al., 2013). Naturally, it needs observation data with much higher resolutions of time and 
space to reveal the detailed features of EP.

In recent years, global warming has further exacerbated the frequency and intensity of EP following the 
Clausius-Clapeyron relation (Trenberth, 1998). Particularly, the hourly EP is more susceptible to surface temper-
ature and moisture-holding capacity of the atmosphere than the daily and sub-daily scale (3 < t < 24 hr) (Chen 
et al., 2021; Park & Min, 2017; Tang et al., 2020; Wu & Luo, 2019). The hydrometeorological and geologic 
hazards induced by the EP at hourly timescale are different from those at daily scale (Zhao et al., 2020). The 
hourly EP data can capture the elaborate features in the process of EP events (such as the duration and diurnal 
variation) (Li, 2018; Li et al., 2013; Zhao et al., 2020). Obviously, using the hourly precipitation and reanalysis 
data to identify the predominant circulation systems of regional hourly EP events (RHEPE) over TP and SCB is 
necessary.

There are still evident challenges in describing, modeling, and forecasting the process of EP at hourly or sub-daily 
time scale (Pfahl et al., 2017; Zhang et al., 2017). For promoting the prediction of EP, researchers have developed 
and improved numerical models and prediction technology (such as increasing model resolution and improving 
the parameterization schemes) (Huang et al., 2020; Tian et al., 2020; Zhong & Yang, 2015), and explored the 
machine learning utilized in EP (such as cluster analysis and the attribution simulations based on circulation 
similarity) (Qian et al., 2022; Tang et al., 2021; Ye & Qian, 2021).

Identifying the synoptic weather patterns based on the machine learning method is an effective way to under-
stand the occurrence mechanism of EP (Utsumi et al., 2016, 2017). The EP over the TP and SCB in summer 
may be influenced by various-scale synoptic systems, such as the Indian monsoon, East Asian monsoon, the 
mid-latitude westerlies, and the local moisture recycling (Bolch et al., 2012; Duan et al., 2011; Tian et al., 2007; 
Xu et al., 2008; Yao et al., 2012). There are many vital factors affecting the generation and development of EP, 
such as the strength of monsoon (Yao et al., 2012; Zhu et al., 2015), the movement of western North Pacific 
Subtropical High (WNPSH) and South Asia High (SAH) (Liu et al., 2016; Nie & Sun, 2021), anomalous lows 
over TP (Bin & Xiang, 2016; Nie & Sun, 2021; Qian et al., 2015), and the path of water vapor transportation (Hu 
et al., 2015; Liu et al., 2016; Xia et al., 2021). Previous studies pointed out the low vortex/shear line pattern is the 
main synoptic pattern over SCB (Luo et al., 2016; Wu & Luo, 2019). The collaborative impacts of the multiple 
systems at different levels on the RHEPE are not well revealed. Meanwhile, there are few researches exploring 
the dominant synoptic patterns of RHEPE over TP and adjacent areas.

Compared to the previous case studies, we uncover the configuration of the synoptic systems at different levels 
responsible for the summer RHEPE over CETP and SCB from a climatic perspective, which may provide the 
universality of atmospheric conditions related to RHEPE. In this study, we mainly focus on addressing the follow-
ing two questions: What are the spatial-temporal characteristics of the summer RHEPE over CETP and SCB in 
the recent 21 years? What are the typical synoptic patterns leading to the summer RHEPE over CETP and SCB?

2.  Data and Method
2.1.  Data

The data used in study are listed as follows:

1.	 �The latest version (V06) of the half-hourly Integrated Multi-satellite Retrievals for Global Precipitation Meas-
urement (GPM-IMERG) with 0.1° resolution during 2000–2020 (Hou et al., 2014), which can well capture 
the precipitation spatial-temporal distribution over TP and SCB in summer (Ma et al., 2016; Tang et al., 2020; 
Yang et al., 2020; Zhang et al., 2018). The GPM-IMERG data in summer (June, July, and August) is converted 
into hourly precipitation for revealing the characteristics of summer RHEPE over the CETP and SCB.

2.	 �The fifth generation of ECWMF atmospheric reanalysis data (ERA5) with a horizontal resolution of 0.25° and 
temporal resolution of 1 hr over the period of 2000–2020 (Hersbach et al., 2020), which has high confidence 
in the precision over the TP and SCB (Sun et al., 2021; Xia et al., 2021).

3.	 �The Shuttle Radar Topography Mission (SRTM) Digital Elevation Database v4.1 with the horizontal resolu-
tion of 3 arc s (∼90 m) (Jarvis et al., 2008).
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2.2.  Definition of Extreme Precipitation and Regional Events

The 95th percentile of all historical hourly precipitation records with an intensity ≥0.1 mm in the summers of 
2000–2020 is regarded as the EP threshold at each grid (He & Zhai, 2018; Xie et al., 2018). The EP for each 
grid at a given time is detected when the precipitation intensity exceeds the 95th percentile threshold. The 95th 
percentile of grid numbers (≥1) with simultaneous EP over a given region in the summers of 2000–2020 is taken 
as the RHEPE threshold (Tang et al., 2021). And then we can detect the RHEPE when the number of grids with 
simultaneous EP exceeds the 95th percentile threshold of the counted grid numbers within a specific region at a 
given time. For some RHEPEs that have the same number of grids with simultaneous EP but different distribu-
tions, we regard them as separate events. We detected 2334 (2330) RHEPE in the summers of 2000–2020 over 
CETP (SCB).

2.3.  Definition of South Asia High, Western North Pacific Subtropical High, and Low-Level Vortex

The 1,255 dagpm contour at 200 hPa is taken as the reference line of South Asia High (SAH) (Wu et al., 2015). 
The 586 dagpm contour at 500 hPa is taken as the reference line of the Western North Pacific Subtropical High 
(WNPSH) (Wei et al., 2014). The low-level vortex over SCB is represented by the closed 144 dagpm contour at 
850 hPa (Mu & Li, 2017).

2.4.  Method

Based on the SRTM terrain height data, the sub-grid topography standard deviation (Sd) reflecting the terrain 
complexity within a given grid(i, j) of the 0.1° GPM data is calculated by Wu et al. (2018):

𝑆𝑆𝑆𝑆 =
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√

√
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where 𝐴𝐴 ℎ represents the regional mean terrain height of the 14,641 (121 × 121) sub-grid points within a grid of 
0.1° by 0.1°. h(i1, j1) is the sub-grid terrain height of SRTM. The 𝐴𝐴 𝐴𝐴1 and 𝐴𝐴 𝐴𝐴1 indicate the sub-grid number centered 
by the sub-grid (ii, jj) for the west-east direction and south-north direction, respectively. The sub-grid numbers ii 
and jj were converted from the grid numbers i and j based on the relation between sub-grids (3 arc s) and GPM 
grids (0.1°), respectively.

Mann-Kendall method (Gilbert, 1987; Kendall, 1975; Mann, 1945) is used to evaluate the statistical significance 
of temporal trends for the frequency and intensity of RHEPE.

2.5.  Clustering Method

Compared with the K-means method, spectral clustering has stronger adaptability to data distribution, a better 
clustering effect, and less computation (von Luxburg, 2007). It performs traditional clustering on affinity matrix 
rather than raw data and is rarely applied in atmospheric science yet (Tang et al., 2021). This study adopted the 
python machine learning package (Pedregosa et al., 2011) containing spectral clustering to conduct cluster analy-
sis on the wind fields at 500 , 300, and 200 hPa levels for CETP (925 , 850, 700, 500, and 200 hPa levels for SCB) 
when the RHEPE happens. u and v wind components on each grid point are reduced to a time-only array and 
normalized time series. Some options in the algorithm need to be set before calculating, such as setting the “near-
est_neighbors” to construct the affinity matrix and the “kmeans” is selected to assign the cluster labels. Finally, 
the classification cluster sequence corresponding to the time series is obtained for synoptic pattern analysis.

3.  Result
3.1.  Background

The altitude decreased from northwest to southeast over TP with much larger topographic fluctuation in south-
eastern TP (Figures 1a and 1b). Topography uplifts the airflow, blocks the synoptic systems and water vapor 
transportation and further affects the amount, intensity, frequency, and duration of EP (Hu et al., 2021; Sandvik 
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et al., 2018; Shen et al., 2022). Based on the similar topographic fluctuation and comparable EP threshold, we 
focus on the two sub-regions: CETP (30°N–36°N, 90.5°E–102.5°E) and SCB (28°N–33°N, 102.5°E–110°E) 
(Figures 1b and 1c). The EP amount during the RHEPE over the CETP (SCB) contributes more than 45.6% 
(55.2%) of the total EP amount on the regional average therein with much larger contributions over north 
CETP  (central SCB) (Figure 1d). Meanwhile, the intensity and frequency of the RHEPE over most parts of CETP 
and SCB show significant increasing trends during 2000–2020 (Figures 1e and 1f).

3.2.  Synoptic Patterns Responsible for the Summer RHEPE Over CETP

3.2.1.  The Features of Synoptic Patterns

Cluster analysis identifies two (cluster numbers are referenced by an objective score according to Caliński & 
Harabasz,  1974) synoptic patterns responsible for the summer RHEPE over CETP (Figure  2). The synoptic 

Figure 1.  The distribution of terrain height (a), sub-grid topographic standard deviation (b), and the sub-region boundaries (red box) for CETP and SCB. The 
distribution of the EP threshold in summers of 2000–2020 based on the 95th percentile is shown in (c). The contribution of EP amount in RHEPE to the total EP 
is presented in (d). The distribution of trends of EP intensity and frequency when RHEPE happens over CETP and SCB during 2000–2020 is shown in (e and f), 
respectively. The statistical significance of trends is tested by the Mann-Kendall method, and the significant increase/decrease trend is at the 0.05 significance level.
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pattern 1 leading to 55% of the total RHEPE occurrences is characterized by the SAH at 200  hPa covering 
southern TP (Figure 2a) with the WNPSH at 500 hPa located south accompanied by the southwesterly wind over 
CETP (Figure 2c). Under this synoptic pattern, relatively higher EP occurrence probability, which is defined 

Figure 2.  The synoptic patterns responsible for the summer RHEPE over CETP revealed by clustering at 200 hPa (a–b) 
and 500 hPa (c–d). The mean wind field (vector, units: ms −1), geopotential heights (contour, units: dagpm), and occurrence 
probability of EP (shaded, units: %) under each synoptic pattern are shown in (a–d). (e, f) show the distribution of occurrence 
probability of EP (grids with the EP occurrence probability greater than 10% are dotted), intensity (contour, units: mm h −1), 
and amount (shaded, units: mm) of RHEPE under different synoptic patterns over CETP. (g, h) show the RHEPE occurrences 
(units: hour) under different synoptic patterns in June, July, and August with the contributions (numbers in the brackets, units: 
%) to the total RHEPE occurrence in summer during 2000–2020.
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as the ratio of total EP occurrences at each grid under a given synoptic pattern to the total occurrences of this 
synoptic pattern (Tang et al., 2021), mainly concentrates in the southeast CETP (Figures 2a and 2c). The maximal 
cumulative rainfall amount induced by the RHEPE in summer averaged over 2000–2020 with the intensity above 
60 mm and maximal EP intensity above 6 mm hr −1 are mainly located over the southeast CETP (Figure 2e), this 
is well corresponding to the location of the high EP occurrence probability. The synoptic pattern 1 predominantly 
occurs in June and July with a portion of 84.3% (Figure 2g), this is consistent with the principle that the WNPSH 
is located farther south in June and July than in August (Xu et al., 2020).

The synoptic pattern 2 results in 45% of the total RHEPE occurrence in summer over CETP, it is featured by the 
northward advance of strengthened SAH at the 200 hPa covering the whole CETP (Figure 2b) and intensified 
and northwestward extended WNPSH with prevailing southwesterly winds at 500 hPa over CETP (Figure 2d) 
compared to the synoptic pattern 1 (Figures 2a and 2c). Under this synoptic pattern, relatively higher EP occur-
rence probability is mainly located in the northeast CETP, where the maximum cumulative EP amount induced 
by the RHEPE with a magnitude of ∼50 mm and maximal EP intensity of 6 mm hr −1 are located (Figure 2f). The 
synoptic pattern 2 of summer RHEPE over CETP frequently occurs in July and August with a portion of 92% 
(Figure 2h), corresponding well to the farther north location of the WNPSH relative to the synoptic pattern 1.

In addition, the frequency and regionally mean intensity of the total summer RHEPE over CETP all show an 
obvious increasing trend during the recent two decades with much more significant increasing trend of intensity 
(Figures S1b and S1d in Supporting Information S1). And both the synoptic patterns all contribute to the increas-
ing trends in the frequency and intensity of total RHEPE, except that the trends are relatively larger under the 
synoptic pattern 1 than under the synoptic pattern 2 (Figure S1e in Supporting Information S1).

3.2.2.  Impact of the Synoptic Patterns on the Summer RHEPE Over CETP

How the different synoptic systems affect the summer RHEPE over CETP will be addressed in the following 
section. As shown in Figure 3a, the synoptic pattern 1 for the summer RHEPE over CETP is characterized by the 
eastward extended SAH and westward extended WNPSH with the strengthened southwesterly water vapor trans-
port. From Figure 3c, the anomalous divergence at 200 hPa and anomalous convergence at 500 hPa under  the 
synoptic pattern 1 is helpful to strengthen the upward motion over the south CETP and thereafter induced EP 
occurrence (Figures 2a and 2c) there (Figure 2e).

Compared to the synoptic pattern 1, both the strengthened SAH with eastward extension and the intensified 
WNPSH with westward extension are located farther north with strengthened southeasterly water vapor trans-
port under the synoptic pattern 2 (Figure 3b). Meanwhile, from Figures 3c and 3d, the anomalous convergence 
(divergence) at 500 hPa (200 hPa) under the synoptic pattern 2 favors intensifying the upward motion over the 
north CETP and thereafter much larger EP occurrence probability (Figures 2b and 2d) and more rainfall there 
(Figure 2f).

From the evolution of the atmospheric conditions at different levels during the 12–0 hr before the RHEPE occur-
rence under both synoptic patterns (Figure S2 in Supporting Information S1), the SAH at 200 hPa clearly exhibits 
a gradual strengthening process, the WNPSH at 500 hPa is stable before the RHEPE occurrence.

Overall, the upward motion and water vapor transportation strongly vary with the configurations of the SAH and 
WNPSH under different synoptic patterns of the summer RHEPE and determine the location and magnitude of 
EP over CETP. Particularly, the variation of SAH before the RHEPE occurrence maybe an important signal for 
the prediction of RHEPE.

3.3.  Synoptic Patterns Responsible for the Summer RHEPE Over SCB

3.3.1.  The Features of Synoptic Patterns

The typical synoptic patterns related to the summer RHEPE over SCB can be divided into twocategories 
(Figure 4). The synoptic pattern 1 leading to 52.6% of the total RHEPE occurrences is featured by the SAH 
at 200 hPa covering the entire SCB with the WNPSH at 500 hPa extending westward to the southeast SCB 
(Figures 4a and 4c). Meanwhile, an evident low-level vortex at 850 hPa is located in the western SCB with 
southerly wind prevailing there (Figure 4e). Under this synoptic pattern, the relatively higher EP occurrence 
probability is mainly distributed in the southwest SCB, where the accumulated EP amount is more than 200 mm 
in summer averaged over 2000–2020 with a maximal EP intensity center of 11 mm hr −1 (Figure 4g). Associated 
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with the northward movement of WNPSH, the summer RHEPE over SCB under the synoptic pattern 1 mainly 
occurs in July and August with a portion of 86.5% (Figure 4i).

The other synoptic pattern responsible for the summer RHEPE over SCB accounts for 47.4% of the total RHEPE 
occurrences. The synoptic pattern is mainly featured by the westward retreat of SAH at 200 hPa compared to 
the synoptic pattern 1 (Figures 4b and 2b) with a shallow trough located in the southwestern SCB at 500 hPa 
(Figure 4d). The low-level vortex is located in central SCB with the strong southwesterly wind bringing abun-
dant water vapor (Figure 4f). Under this pattern, a much higher EP occurrence probability and more rainfall 
(Figure 4h) are located in the southeastern SCB. Relative to synoptic pattern 1, as the WNPSH is located farther 
south, the synoptic pattern 2 mainly occurs in June (Figure 4j).

Meanwhile, the frequency and regional mean intensity of the total RHEPE in summer over SCB all show an obvi-
ous increasing trend in the recent two decades with much more significant increasing trend in intensity (Figures 
S1b and S1d in Supporting Information S1), this is similar to the situation in CETP (Figures S1a and S1c in 
Supporting Information S1). Furthermore, both the synoptic patterns all contribute to the increasing trends in the 

Figure 3.  Configuration of South Asian High (SAH) (climatology: purple dotted lines, synoptic pattern: red solid lines, units: dagpm) and Western North Pacific 
Subtropical High (WNPSH) (climatology: green dotted lines, synoptic pattern: orange solid lines, units: dagpm) with the occurrence probability of EP (shaded) and the 
anomalous water vapor transport flux vertically integrated from surface to 300 hPa (vector, units: kg m −1 s −1) during RHEPE under each synoptic pattern over CETP 
(a–b). The pressure-longitude cross-section of anomalous convergence (shaded) and atmospheric circulation (stream) averaged along 31°N to 35°N under each synoptic 
pattern in summer relative to the climatology of 2000–2020 (c–d). The gray shadings in (c, d) show the terrain height.
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Figure 4.  The synoptic patterns responsible for the summer RHEPE over SCB revealed by clustering at 200 hPa (a–b), 500 hPa (c–d), and 850 hPa (e–f). The mean 
wind fields (vector, units: m s −1), geopotential heights (contour, units: dagpm), and occurrence probability of EP (shaded, units: %) under each synoptic pattern are 
shown in (a–f). (g, h) show the distribution of occurrence probability of EP (grids with the EP occurrence probability greater than 10% are dotted), EP intensity (contour, 
units: mm h −1), and EP amount (shaded, units: mm) during RHEPE under each synoptic pattern over SCB. (i, j) show the RHEPE occurrences (units: hour) under each 
synoptic pattern in June, July, and August with the contributions (numbers in the brackets, units: %) to the total RHEPE occurrences in summer during 2000–2020.
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frequency and intensity of total RHEPE, except that the trends are relatively larger under synoptic pattern 2 than 
under synoptic pattern 1 (Figure S1e in Supporting Information S1).

3.3.2.  Impact of the Synoptic Patterns on the Summer RHEPE Over SCB

Under the synoptic pattern 1, relative to the climatology, the much stronger and westward extended SAH and the 
relatively stronger WNPSH with northwestward extension overlap together with strengthened southerly water 
transport over the southeast SCB and a low-level vortex over west SCB (Figure 5a). Meanwhile, the anomalous 
convergence induced by the low-level vortex and the anomalous divergence caused by the strengthened SAH 
favor the upward motion over southwest SCB (Figure 5c) and thereafter much higher EP occurrence probability 
(Figure 5a) and more rainfall (Figure 4g) therein.

Figure 5.  Configuration of South Asian High (SAH) at 500 hPa (climatology: purple dotted lines, synoptic pattern: red solid lines, units: dagpm), Western North 
Pacific Subtropical High (WNPSH) at 200 hPa (climatology: green dotted lines, synoptic pattern: orange solid lines, units: dagpm) and the low vortex at 850 hPa 
indicated by a closed contour of 143 dagpm geopotential height with the occurrence probability of EP (shaded, units: %) and the anomalous water vapor transport 
flux vertically integrated from surface to 300 hPa (vector, units: kg m −1 s −1) during RHEPE under each synoptic pattern over SCB (a, b). The pressure-longitude 
cross-section of anomalous convergence (shaded) and atmospheric circulation (stream) under each synoptic pattern averaged along 29°N to 32°N in summer relative to 
the climatology of 2000–2020 (c, d). The gray shadings in (c, d) represent the terrain height.
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Compared to the synoptic pattern 1, synoptic pattern 2 of summer RHEPE over SCB is featured by the southward 
retreat of weakened SAH and WNPSH with a low-level vortex located in central-eastern SCB and southwesterly 
water vapor transport anomalies (Figure 5b). Correspondingly, the anomalous upward motion shifts eastward 
(Figure 5d) with the strengthened southwesterly water vapor transport (Figure 5b) along eastern SCB, where 
the EP occurrence probability (Figure 5b) and the rainfall induced by the RHEPE (Figure 4h) are much higher.

From the evolution of the atmospheric conditions at different levels before the RHEPE occurrence, the SAH 
under synoptic pattern 1 exhibits a westward shift, as well as slight variations in the position of the WNPSH and 
low vortex (Figure S3 in Supporting Information S1). However, the SAH, WNPSH, and low vortex under synop-
tic pattern 2 have no apparent changes during the 12 hr before the RHEPE occurrence (Figure S3 in Supporting 
Information S1).

Overall, an obvious low-level vortex imbedded in the eastward extended SAH with westward extended WNPSH 
is a mainly synoptic feature for the summer RHEPE over SCB. Similarly, the evaluation of SAH before the 
RHEPE occurrence maybe an important signal for the prediction of RHEPE.

4.  Summary and Discussion
The hourly satellite retrieved precipitation and reanalysis data are used to identify the predominant synop-
tic patterns related to the RHEPE in the summers of 2000–2020 over CETP and SCB. Results show that the 
frequency and intensity of summer rainfall extremes when RHEPE happens over CETP and SCB exhibit signif-
icant increasing trends in the recent two decades. The summer RHEPE over both CETP and SCB are dominated 
by the background large-scale circulations featured by the configuration of the eastward extended SAH and 
westward extended WNPSH, which largely contributes to the increasing trends in the frequency and intensity 
of total RHEPE in summer during 2000–2020. In particular, the summer RHEPE over SCB is mainly induced 
by a low-level vortex imbedded in the background of large-scale circulations. The water vapor transportation 
determined by the different predominant synoptic patterns leads to the significant diversity of RHEPE over CETP 
and SCB in summer.

The summer RHEPE over both CETP and SCB are influenced by the combination of eastward extension of SAH 
and westward extension of WNPSH, but the amount, frequency, and intensity of RHEPE over these two regions 
have striking differences. It is non-negligible that the terrain affects the RHEPE over CETP and SCB (Chow & 
Chan, 2009; Ma et al., 2018; Tuel & Martius, 2022). Although this study revealed the configuration of multiple 
climate systems, the quantitative impact of topography needs to be further investigated through numerical exper-
iments in the future.

Data Availability Statement
The GPM-IMERG precipitation data can be downloaded from https://disc.gsfc.nasa.gov/datasets/
GPM_3IMERGDF_06/summary/. The ERA5 reanalysis data are available from https://cds.climate.coperni-
cus.eu/cdsapp#!/search?type=dataset. The Shuttle Radar Topography Mission (SRTM) 90m Digital Elevation 
Database v4.1 was used in this study, which is available at https://developers.google.com/earth-engine/datasets/
catalog/CGIAR_SRTM90_V4.
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