
1.  Introduction
Tibetan Plateau (TP), which is well known as the “Asia's Water Tower” and “Roof of the World,” has the highest 
alpine lake concentrations in the world. And the sizes and numbers of these lakes have been experiencing rapid 
expansion over the past several decades (Dong et al., 2018; G. Zhang et al., 2021). Currently, TP harbors more 
than 1,400 lakes with an area of more than 1 km 2, including 13 lakes with an area of more than 500 km 2, and the 
total lake area exceeds 47,000 km 2 (Ma et al., 2009; F. Sun et al., 2020; Wan et al., 2014; Zhu et al., 2019). Lakes 
features with high specific heat capacity, low albedo, high clarity, low surface roughness, and high water vapor 
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supply, and plays distinct roles in modulating the land-air mass and flux exchange and surface energy balance 
compared with other land cover types (Bonan, 1995; MacKay et al., 2009; Su et al., 2020; B. Wang et al., 2020). 
As a result, the presence of large lakes would greatly alter the boundary layer condition and mesoscale circu-
lations, and further affect the local weather and climate (Notaro, Holman, et al., 2013; Wen et al., 2015; Wu 
et al., 2019).

Lake climatic effects significantly vary with regions and timescales, that is, diurnal and seasonal. Previous studies 
of Great Lakes regions in North America have demonstrated that the water body can reduce the amplitude of the 
diurnal cycle and annual cycle of air temperature in the lake area, weaken the surface pressure (Notaro, Holman, 
et al., 2013), and trigger downwind snowfall during the cold season by high lake-air temperature difference which 
induce large heat release in terms of latent and sensible flux from the lake to overlying air (Eichenlaub, 1970; 
Kristovich et al., 2003; Miner & Fritsch, 1997; Niziol et al., 1995). The Great Lakes strongly increase precipita-
tion over the downwind areas in winter and cause a relatively slight decrease over the lakes in summer (Notaro, 
Zarrin, et al., 2013; Scott & Huff, 1996). Kristovich and Spinar (2005) found an obvious morning maximum and 
afternoon/evening minimum in lake-effect precipitation frequency over the Great Lakes in winter. Studies for 
other temperate lakes (e.g., Lake Ladoga and Lake Taihu) have come to similar conclusions, which are closely 
related to lake-induced destabilization of the lower atmosphere and promotion of thermal convective activities 
(Gu et  al., 2016; Samuelsson et  al., 2010). As the largest group of freshwater bodies on the earth, the Great 
Lakes can produce more snowfall by the combined effects of lake clusters than by Lake Ontario alone (∼200% 
more) and generally strengthen the cyclonic system near the surface in cold season (Lang et  al.,  2018; Xiao 
et al., 2018). However, tropical East African lakes show different climatic effects from temperate lakes (Van de 
Walle et al., 2020). Unlike the Great Lakes, low-latitude lakes have relatively higher temperatures than surround-
ing land and tend to increase precipitation in summer rainy season (Dutra et al., 2010). Because of the intense 
evaporation from water bodies (Gat & Matsui, 1991; Nicholson & Yin, 2002), tropical lakes lead to significant 
precipitation increases over the lake and adjacent areas due to continuous enhancements of water vapor mixing 
ratio, especially during nighttime (Diallo et al., 2018; Koseki & Mooney, 2019). In addition, the warm (cold) 
lake surface during nighttime (daytime) excites a large number of thunderstorms over Lake Victoria (surrounding 
land; Thiery et al., 2016).

Owing to the special features of TP, that is, high altitude, low air pressure, low air temperature, and intense solar 
radiation, strong lake-air interactions and lake effects shape the regional weather and climate (Ma et al., 2009; 
Wen et al., 2016; Wonsick & Pinker, 2014). However, the harsh environmental conditions cause great difficulty 
in meteorological observation (J. Sun et al., 2020; B. Wang et al., 2015). While benefiting from the development 
of regional climate models, scholars could simulate the lake-air interactions and lake effects with much finer 
resolution, compensating for the lack of observational data. Recent studies (Su et al., 2019; X. Yang et al., 2021; 
Zhu et al., 2018, 2020) suggested that due to heat transfer from the deeper part to the surface of the lake and the 
reduction in solar radiation absorption at upper-most water layer, lakes on TP tend to warm (cool) the surface 
atmosphere and enhance (weaken) the sensible and latent heat flux at nighttime (daytime) during autumn 
(summer). The heating and surface friction inconsistency between the lake and land produces obvious lake-land 
thermal and dynamic contrasts and excites the diurnal cycle in the lake-land breeze and vertical motions (L. Xu 
& Liu, 2015; L. Xu et al., 2014), which further causes the obvious diurnal cycle in convective precipitation over 
lakes (Su et al., 2020; Wen et al., 2015). Compared to low-latitude lakes, the hydrothermal effect on the stability 
of the air-lake boundary layer over the lakes on TP appears even stronger (Wen et al., 2016; Y. Xu et al., 2011). 
Similar to the temperate and boreal lakes, the lakes over TP show significant seasonal differences in their effects. 
Dai, Yao, et al. (2020) found that Lake Nam Co (LNC) can lead to a precipitation decrease of 45%–70% over 
the lake in summer but an increase of 60% over the lake and downwind areas in autumn. Similar conclusions 
were confirmed at Qinghai Lake on TP by Su et al. (2020). Although the thermal effect of lakes is suppressed in 
summer, X. Yao et al. (2021) indicated the surface friction contrasts between the water body and land can still 
enhance the precipitation over the downwind of Lake Selin Co on the central TP. Such a dynamic factor was also 
found to be effective in winter lake-effect precipitation (Behravesh et al., 2021). Wu et al. (2019) revealed that 
the climatic effects of lake clusters on TP are complicated by intrinsic lake features, local terrain, and background 
circulations. For example, large and deep lakes on the central TP tend to show strong heat effects and significantly 
enhance the convective rainfall during nighttime compared with small and shallow lakes on the north TP (Wu 
et al., 2019; Zhu et al., 2020).
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Over the past decade, researchers have mostly focused on the climatic effects of lakes alone but few studies 
have paid attention to the comprehensive effects of TP lakes and surrounding terrain on local climate or extreme 
weather events. A recent study on the desiccated lake system in Mexico City has shown that the lake would clima-
tologically enhance the intensity of heavy precipitation (López-Espinoza et al., 2019). Lake Victoria enhances the 
diurnal cycle in rainfall and significantly increases the frequency of extreme weathers, and the Gregory Ridge on 
the east side of Lake Victoria intensifies the convergence of the trade winds over the basin and triggers precip-
itation (Thiery et al., 2016; Van de Walle et al., 2020). During extreme events, the upstream and downstream 
topography can affect the amount and location of precipitation around the lakes (Alcott & Steenburgh, 2013; 
Hjelmfelt, 1992; Onton & Steenburgh, 2001). When lake surface temperature rises, the existence of orography 
further amplifies the precipitation intensity (Shestakova & Toropov, 2021). Umek and Gohm  (2016) pointed 
out that the low-level boundary instability induced by the Lake Constance and orographic lifting are crucial for 
the formation of the snow belt. The analysis of the observed snowstorm in Lake Ontario has demonstrated that 
the orographic enhancement of precipitation promoted by the lake-induced instability and the land-breeze front 
along the Lake Ontario shoreline are the dominant contributors to the pronounced precipitation maximum over 
the Tug Hill (Campbell & Steenburgh, 2017; Veals et al., 2018). As one of the largest lakes on TP, the south and 
east sides of LNC are blocked by Nyainqentanglha Range with complex terrain around the lake basin (Figure 2b). 
Since the 21st century, the observations and numerical simulations of lake-air interactions in Nam Co basin have 
been gradually developed (Biermann et al., 2013; Li et al., 2009; Maussion et al., 2010; B. Wang et al., 2015). 
Gerken et al. (2013) used a two-dimensional ideal model to simulate the lake breeze in the Nam Co basin, then 
proposed two possible circulation mechanisms for convection triggering. X. Yang et al. (2015) found that LNC 
together with Nyainqentanglha Mountains may strengthen the mesoscale circulation around the lake in summer. 
Previous studies have given the seasonal and spatial distribution characteristics of precipitation over the Nam Co 
basin (Dai, Yao, et al., 2018; J. Xu et al., 2018). A 1-month simulation carried out in October 2006 showed that 
LNC caused more than 70% downwind precipitation during the extreme snowfall event on 24 October 2006 (Dai, 
Wang, et al., 2018). Dai, Chen, et al. (2020) further conducted a simulation along 31°–32°N in the southern part 
of TP and indicated that the monthly snow depths over the downwind area of LNC were much deeper than other 
large lakes over TP. The in-situ observed frequency and intensity of extreme snowfall (precipitation) events also 
showed significant increasing trends during the past 15 years over the Nam Co basin (Dai, Chen, et al., 2020). 
The extreme precipitation expands the risk of mountain hazards in alpine region and poses a severe challenge to 
the fragile ecological environment (Cui & Jia, 2015; Gao et al., 2018; Ge et al., 2017; Ma et al., 2018; L. Wang 
et al., 2017).

Previous studies suggested that the long east-west axis of LNC, as well as the barrier of Nyainqentanglha Moun-
tains, may contribute to the stronger lake-effect snowfall compared with other large lakes such as Lake Selin 
Co (Dai, Chen, et al., 2020; Kropacek et al., 2010). However, it is unclear how much the LNC together with the 
surrounding topography contributes to the extreme precipitation and what the underlying physical mechanisms 
are. To address these issues, in this study we used the Weather Research and Forecasting (WRF) model to repro-
duce the extreme snowfall event on 24 October 2006 over Nam Co basin (Dai, Wang, et al., 2018) and quantify 
the relative contribution of the LNC and surrounding topography through a set of sensitive experiments. Mean-
while, the underlying physical mechanisms related to the formation of the extreme snowfall induced by LNC 
and surrounding terrain will be further explored. Findings of this study may deepen our understanding of the 
combined effect of alpine lakes with surrounding terrain and provide a reference to further improve the refined 
forecasting of extreme precipitation/snowfall events over lakes and adjacent areas on TP.

2.  Study Area, Data, Numerical Experimental Design
2.1.  Study Area

During 00:00–12:00 local solar time (LST) on 24 October 2006, an extreme precipitation event occurred over the 
mid-east part of LNC and the adjacent downwind areas. It was the fourth-strongest extreme precipitation event 
in cold season during 2005–2016 with the accumulated precipitation of 14.1 mm observed at Nam Co station 
(Dai, Wang, et  al.,  2018). The China Meteorological Forcing Data Set (CMFD; He et  al.,  2020; K. Yang & 
He, 2019, available at http://data.tpdc.ac.cn) also captured this extreme precipitation (Figures 1d–1f), it is shown 
that the precipitation center moved southeastward across the eastern LNC. The concomitant atmospheric circu-
lations (Figures 1a–1c) was featured by a low vortex at 500 hPa level moving southeastward during midnight to 

http://data.tpdc.ac.cn
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morning and sufficient water vapor transport with the relative humidity over 
90% over most areas of Nam Co basin. The wind field at 500 hPa transformed 
from a strong southwesterly wind to a strong northwesterly wind over the 
LNC, accompanied by the wind shear and cold advection to the lake area. 
Such a circulation condition provided favorable large-scale environmen-
tal conditions for the occurrence of this extreme snowfall event (Alcott & 
Steenburgh, 2013).

To address how LNC and the surrounding orography affect this extreme 
snowfall and the underlying mechanisms, we focus on the Nam Co basin and 
surrounding areas indicated by the red box in Figure 2a, where the topog-
raphy and land cover types are diverse (Figures 2b and 2c). In addition to 
wetland and lake land types, such as LNC which is the second largest lake 
on the central TP (30°30′−30°56′, 90°16′−91°03′, Figure 2) with an area 
of more than 2,000 km 2, the mean depth of 40 m and altitude of 4,718 m 
(Lazhu et al., 2016; J. Wang et al., 2009; Wu & Zhu, 2008) and begins to 
freeze in mid-January and completely melts by the end of April with an aver-
age ice period of about 87 days (Gou et al., 2017), there are sparse shrubs, 
grasslands, hills, and mountains covered by glaciers and snow over Nam Co 
basin. The Nyainqentanglha Mountain extending from southwest to north-
east is located along the south and east sides of LNC with a mean altitude of 
∼6,000 m. The entire mountain range contains approximately 6,426 glaciers 
(Ji et al., 2018). For simplicity and convenience, the Nyainqentanglha Moun-
tain (NQTL) is divided into three parts: west NQTL, central NQTL, and east 
NQTL (Figure 2b). The Nam Co basin is affected by the southwest monsoon 
in the warm and wet season while controlled by westerly circulation in the 
cold and dry season (T. Yao et al., 2013).

2.2.  Data

The data used in current study are listed as follows:

1.	 �The fifth-generation ECMWF atmospheric reanalysis (ERA5), which is 
the latest generation to replace its predecessor ERA-Interim reanalysis, 
provides global atmospheric and land surface information, including 
37-level air pressure, temperature, humidity, and winds with a horizontal 
resolution of 0.25° × 0.25° and land surface data with a horizontal reso-
lution of 0.1° × 0.1° at the temporal resolution of 3 hr from 1950 to the 
present (Hersbach et al., 2020). It is available at the website https://www.
ecmwf.int/en/forecasts/datasets/search/ERA5.

2.	 �The CMFD with a temporal resolution of 3 hr and a spatial resolution of 0.1° from 1979 (currently up to 
2018; He et al., 2020; K. Yang & He, 2019, available at http://data.tpdc.ac.cn) is derived from a fusion of 
remote sensing products (GEWEX-SRB and TRMM), reanalysis data set, and CMA in-situ observation data. 
It is one of the most widely used data sets in China. CMFD provides 7 near-surface meteorological elements, 
including surface pressure, 2 m air temperature and specific humidity, 10 m wind speed, downward shortwave 
radiation, downward longwave radiation, and precipitation rate. In this study, we used the precipitation data 
of CMFD to analyze the temporal evolution of snowfall and evaluate the amount and distribution of simulated 
precipitation.

3.	 �The meteorological observation data from the integrated observation at the research stations of multiple 
spheres in Nam Co basin, including the daily temperature, air pressure, relative humidity, wind speed, precip-
itation, and radiation observed at Nam Co station (30°45′N,90°56′E, marked with a red triangle in Figure 2) 
from 1 October 2005 to 31 December 2016, was used to validate the reliability of simulated precipitation 
supplementally. After eliminating systematic errors caused by missing data points and sensor failures, the 
data set achieved the accuracy of raw meteorological observation data required by the China National Weather 

Figure 1.  Geopotential height (gpm, black solid lines), temperature (°C, red 
dashed lines), relative humidity (%, shaded), and wind vector at 500 hPa from 
ERA5 at (a) 03:00 LST, (b) 06:00 LST, and (c) 09:00 LST on 24 October 
2006. (d–f) Three-hour accumulated precipitation of China Meteorological 
Forcing Data Set is shown for the corresponding moment (purple and yellow 
contour lines identify the boundary of lakes and terrain height, respectively).

https://www.ecmwf.int/en/forecasts/datasets/search/ERA5
https://www.ecmwf.int/en/forecasts/datasets/search/ERA5
http://data.tpdc.ac.cn
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Service and the World Meteorological Organization (WMO; Y. Wang & Wu, 2018). More detailed informa-
tion can be found at http://data.tpdc.ac.cn.

4.	 �The Terra satellite platform with the Medium Resolution Imaging Spectroscopy (MODIS) instrument transits 
at 10:30 a.m. and 10:30 p.m. LST to generate the twice-daily 1 km resolution land surface temperature and 
emissivity data product MOD11A1. The detailed introduction can be found at https://modis.gsfc.nasa.gov/
data/dataprod/mod11.php.

5.	 �The IGBP modified MODIS land-use categories with a resolution of 10 arc seconds (Friedl et al., 2010), 
which is available at https://lpdaac.usgs.gov/products/mcd12q1v006/, and the global lake database version 2 
(GLDBv2) including the lake location and depth with the horizontal resolution of 1 km (Choulga et al., 2014; 
Kourzeneva, 2010) is available at http://www.flake.igb-berlin.de/site/external-dataset.

Figure 2.  (a) Terrain height of Tibetan Plateau and the location of Lake Nam Co (LNC); (b) terrain height of Nam Co basin, and the purple boxes divide 
Nyainqentanglha Range into three parts (west, central, and east NQTL); (c) land cover types of Nam Co basin; (d) bathymetry of LNC (unit: m, red asterisk mark 
indicates the Nam Co observational station).

http://data.tpdc.ac.cn/
https://modis.gsfc.nasa.gov/data/dataprod/mod11.php
https://modis.gsfc.nasa.gov/data/dataprod/mod11.php
https://lpdaac.usgs.gov/products/mcd12q1v006/
http://www.flake.igb-berlin.de/site/external-dataset


Journal of Geophysical Research: Atmospheres

ZHAO ET AL.

10.1029/2021JD036190

6 of 20

2.3.  Model Configuration and Numerical Experimental Design

The WRF Model version 3.9.1 coupled with a 1-D lake model (Wu et al., 2020) is used in the current study. It 
is designed by National Center for Atmospheric Research for atmospheric research and operational forecast-
ing applications (Powers et al., 2017). The lake component scheme in WRF is a 1-D mass and energy balance 
model (Gu et al., 2015) with up to 5 snow layers on the lake ice, 25 lake water/ice layers, and 10 soil layers in 
the bottom sediment (Subin et al., 2012). This lake model with some key parameters tuned can well reproduce 
the variation of the lake surface temperature and the thermal stratification of LNC (Huang et  al.,  2019; Wu 
et al., 2020). Compared to the WRF model uncoupled with the 1-D lake model, the lake-air coupled model can 
significantly improve the simulation of meteorological elements such as precipitation and temperature over the 
lake and surrounding areas (Gu et al., 2016; Ma et al., 2019; F. Wang et al., 2019; Wu et al., 2020). Numerical 
simulations for LNC have shown that increasing the lake eddy diffusion coefficient can mitigate the rapid cooling 
due to insufficient mixing of highland lakes in autumn (Fang et al., 2017; Huang et al., 2019). A series of exper-
imental results have proven that increasing the lake eddy diffusion coefficient, decreasing the extinction coeffi-
cient and the maximum water density temperature, as well as adopting a parameterized surface roughness length 
can effectively reduce the overestimation of 2 m air temperature over the lake and downwind precipitation (Wu 
et al., 2020; Xiao et al., 2016; L. Xu et al., 2016). In this study, the key parameters in the lake component model 
were set as the same as in the study of Wu et al. (2020), who calibrated the lake component model in WRF3.9.1 
well. In addition, the main physical parameterization schemes adopted in this study are listed as follows: WRF 
single–moment 6-class microphysical scheme (Hong & Lim, 2006); Grell–Devenyi ensemble cumulus scheme 
(Grell & Dévényi, 2002); RRTM longwave radiation scheme (Mlawer et al., 1997); Dudhia shortwave radiation 
scheme (Dudhia, 1989); Noah land surface scheme (Tewari et  al., 2004); and YSU planetary boundary layer 
(Hong et al., 2006).

The horizontal resolution of 5 km and 40 sigma vertical levels of atmosphere were applied for the WRF simula-
tion over the study region including LNC and the neighboring areas (Figure 2b). The model domain was centered 
at (30.45°N, 90.60°E) with 72 × 54 grid points and the time step was set to 30 s. The land surface types at each 
WRF model grid were derived from the MODIS land-use categories (Friedl et  al.,  2010). The lake fraction 
(sub-grid lake area/grid area) and depth at each WRF model grid were derived from the GLDBv2 lake location 
and depth data. As the depth of LNC is very unreal in the GLDBv2 data set, it was updated by the observed lake 
depth (Figure 2d from J. Wang et al. [2009]). Meanwhile, the lake temperature initialization has a significant 
impact on model results (Mallard et al., 2014, 2015; X. Zhang et al., 2016). According to previous studies, the 
whole water body of LNC is uniformly mixed and water temperature from top to bottom exhibits very small 
differences at the end of October (Huang et al., 2019). Following Wu et al. (2020), the lake water temperatures at 
all vertical layers were initialized by the MODIS lake surface temperature.

In this study, we set up 4 experiments namely CTL, EXP_NL, EXP_NM, and EXP_NLM with the CTL as 
the control experiment and the others as sensitivity experiments: the CTL experiment adopted default setting 
including the LNC and its surrounding orography (Figures 3a and 3e); the LNC was replaced by the adjacent 
land cover types in the EXP_NL experiment (Figures 3b and 3f); the terrain height of the neighboring area above 
the elevation of LNC (4,817 m) was set to 4,817 m in the EXP_NM experiment (Figure 3g), and the snow and 
ice on the Nyainqentanglha Mountains were recovered by the adjacent land cover types (grassland, Figure 3c); 
LNC and its surrounding orography were replaced by the nearby land cover types in the EXP_NLM experiment 
(Figures 3d and 3h). All experiments shared the same model configurations and were driven by the same initial 
and lateral boundary conditions of atmosphere, which were derived from the 3-hourly ERA5 data. Each experi-
ment started from 00:00 UTC on 23rd October and ended at 00:00 UTC on 25 October 2006 with the first 12 hr 
for model spin-up.

3.  Results
3.1.  Model Validation

To indicate the performance of the WRF model in reproducing the extreme snowfall event over Nam Co basin 
on 24 October 2006, Figure 4 gives the spatial distribution of accumulated precipitation from CMFD and CTL 
simulation during 00:00–12:00 LST on 24 October 2006. It can be noted that the WRF model can reasonably 
reproduce the intensity and spatial pattern of precipitation with a spatial correlation coefficient of 0.54 (at 0.01 
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Figure 3.  (a–d) Terrain height and (e–h) land cover types in each experiment.
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significance level) over the entire simulation domain (Figures 4a and 4b), despite that the intensity of precipi-
tation along the east shore of the lake is slightly overestimated and the modeled extent of snowfall center over 
eastern LNC is smaller than the observation. The simulated snowfall belt is located along the east shore of LNC 
and the windward slope of east NQTL in the downwind direction with intensities exceeding 25 and 15 mm, 
respectively (Figure  4b), which is closely associated with the direction of the prevailing wind over the land 
surface and  the forcing of the complex terrain around LNC.

Figure 4c gives the comparison of CMFD observed and WRF simulated precipitation at the location of Nam Co 
station (30°45′N, 90°56′E) against the in-situ observation to further verify the accuracy of modeled precipitation. 
The precipitation amount simulated by WRF is slightly higher than the observation. As Nam Co station is located 
at the junction of the lake and mountains with complex surrounding underlying surface conditions, and the model 
results with a resolution of 5 km deviate from the location of the Nam Co station, which seems to cause the model 
bias. Combined with the spatial distribution of precipitation from CMFD, the model results are comparable with 
observations. Overall, the WRF model can reasonably reproduce this extreme snowfall event in terms of intensity 
and spatial distribution. It can be used to study the effects of LNC and its surrounding terrain on the occurrence 
of this extreme snowfall event.

3.2.  Impacts of LNC and Surrounding Terrain on the Extreme Snowfall on 24 October 2006

This section will demonstrate how the LNC and its surrounding terrain affect the extreme snowfall on 24 Octo-
ber 2006 and their relative importance. Figure 5 gives the spatial distribution of accumulated total precipitation 
during the extreme snowfall event from three sensitive experiments and the simulated precipitation differences 
(including total precipitation, convective precipitation, and large-scale precipitation) between each sensitive 
experiment and the CTL experiment. To facilitate the quantification, Table 1 lists the regional mean precipitation 
simulated by each experiment in two sub-regions (sub-reg1 containing the lake and the part of the downwind land 
and sub-reg2 containing the downstream orography, Figure 4b).

From Figure 5a, the strong precipitation center over eastern LNC and lake shore regions in the CMFD observa-
tion (Figure 4a) and CTL simulation (Figure 4b) is absent in the EXP_NL experiment when the water surface 
type in the area of LNC is replaced by nearby grass type (i.e., no lake grid included). Although the precipitation 
center with the intensity of ∼10 mm along the slope of east NQTL in the sub-reg2 is still reproduced, the mean 

Figure 4.  (a) Spatial distribution of the China Meteorological Forcing Data Set (CMFD) observed and (b) CTL modeled 
accumulated precipitation during 00:00–12:00 LST on 24 October 2006. (c) Comparison of the CTL simulation against the 
accumulated precipitation from the Nam Co station and CMFD observation during the precipitation extreme event on 24 
October 2006. The CTL simulation and CMFD data were interpolated onto the observation station by bi-linear interpolation. 
Contours show the terrain height.



Journal of Geophysical Research: Atmospheres

ZHAO ET AL.

10.1029/2021JD036190

9 of 20

precipitation amount is largely decreased by 40% relative to the CTL experiment simulation (Figure  5a and 
Table 1). The significant reduction of simulated convective and large-scale precipitation occurs over the lake and 
the downwind areas, respectively, indicating that LNC as the hydrothermal source and adjacent topography is the 
influencing factors for both types of precipitation (Figures 5g and 5j). The modeled regional mean convec tive 
precipitation over sub-reg1 is reduced by 73% due to the absence of LNC relative to the CTL simulation (Table 1). 

Figure 5.  Spatial distribution of the accumulated total precipitation from 00:00 to 12:00 LST on 24 October 2006 produced by sensitive experiments (a–c) and their 
differences from the CTL experiment (d–f). Same as Figures 5d–5f, but for the differences in convective precipitation (g–i) and large-scale precipitation (j–l). Contours 
show the terrain height.
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The difference in total precipitation between the EXP_NL and CTL simulation (Figure 5d) is consistent with the 
results of Dai, Yao, et al. (2018).

Relative to the CTL experiment simulation (Figure 4b), the EXP_NM experiment with lake surface but without 
the surrounding mountains still reproduced the strong precipitation center over eastern LNC and lake shore 
regions (Figure 5b), but the precipitation along the regions from the southeast shore of LNC to the north slopes 
of central NQTL was reduced by 5–15 mm (Figure 5e). However, the precipitation center with an intensity of 
∼12.5 mm over the sub-reg2 in Figure 4b was primarily reproduced (Figure 5b) but with an underestimation of 
∼5 mm (Figure 5e). The absence of the LNC surrounding orography mainly leads to the reduction of large-scale 
precipitation regionally averaged over the sub-reg1 (sub-reg2) by about 54% (40%; Table 1) and further affects 
the extent of the precipitation center.

The EXP_NLM experiment without LNC and its surrounding terrain failed to reproduce the precipitation centers 
in CMFD observation and CTL simulation despite a weak precipitation center simulated in the eastern sub-reg2 
(Figure 5c). The precipitation amount during the extreme snowfall event was dramatically inhibited (Figure 5f) 
due to the absence of LNC and its surrounding terrain, which lead to the regional mean precipitation in sub-reg1, 
sub-reg2, and the entire domain (sub-regs 1 and 2) being reduced by 86%, 52%, and 68%, respectively (Table 1). 
Contrary to the expected result, the terrain and land cover that underwent substantial modification have not 
completely suppressed the precipitation on the downwind land of the eastern shore of LNC, where the amount of 
maximum precipitation is 9.8 mm.

Generally, the accumulated precipitation amount in each sensitive experiment was weakened to different degrees 
relative to the CTL experiment in the extreme snowfall event due to the absence of LNC, surrounding terrain, 
or both. Overall, the presence of LNC determined the intensity and location of this extreme snowfall event to a 
considerable degree, while the surrounding terrain such as NQTL can lead to strengthened precipitation along the 
regions from the southeast shore of LNC to the north slopes of central NQTL and the downwind land of LNC to 
the southern slope of east NQTL and further expand the extent of snowfall belt. The statistics in Table 1 indicate 
that the influences of the lake and topography on precipitation cannot be simply linearly summed. There are still 
other factors in addition to land-atmosphere interaction that affect the amount and distribution of precipitation. 
The influential mechanisms of multiple factors and their synergistic effects on the occurrence of this extreme 
snowstorm will be analyzed in the following section.

3.3.  Possible Mechanisms

From the above analysis in Section 3.2, we have obtained the information about the impacts of LNC and its 
surrounding terrain on the extreme snowstorm on 24 October 2006, but the underlying physical mechanisms were 
not revealed and addressed.

Previous studies (Shi & Xue,  2019; Umek & Gohm,  2016) have suggested that the temperature difference 
between the lake surface and the overlying atmosphere is a key factor for the formation of lake-effect rainfall/
snowfall. Before LNC freezing, the lake-air temperature difference reaches a peak (Du et al., 2020). In this event, 
the daily mean temperature difference between the lake surface and 500 hPa arrived at 19.5°C, which provides the 

Experiment

Mean convective precipitation 
(mm)

Mean large-scale precipitation 
(mm) Mean total precipitation (mm)

Sub-reg1 Sub-reg2 Sub-reg1 Sub-reg2 Sub-reg1 Sub-reg2 Entire domain

CTL 6.3 2.1 2.6 6.7 8.9 8.8 8.8

EXP_NL 1.7 1.8 1.0 3.4 2.7 5.2 4.1

EXP_NM 6.0 1.9 1.2 4.0 7.2 5.9 6.5

EXP_NLM 0.9 2.0 0.3 2.2 1.2 4.2 2.8

Table 1 
Simulated Precipitation During 00:00–12:00 LST on 24 October 2006 for Sub-Reg1, Sub-Reg2 and the Entire Domain 
Shown in Figure 4
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thermodynamic prerequisite for lake-effect snowfall. Surface processes associated with high lake-air temperature 
differences, such as heat flux and water vapor transport, deserve to be investigated primarily (Lazhu et al., 2016).

To illustrate how the lake and surrounding mountains affect this extreme snowstorm and through what key physi-
cal processes, Figure 6 first gives the spatial distribution of the differences in surface-2 m temperature difference, 
10 m wind speed, 2 m air specific humidity, surface latent and sensible heat fluxes simulated by each sensitive 
experiment from the CTL simulations averaged over 03:00–09:00 LST on 24 October 2006. Replacing the water 
body type of LNC with grass type tends to result in the temperature difference between surface and 2 m air 
dramatically reduced by 6–10°C (Figures 6a and 6c), the 10 m wind speeds slowed down by 2–4 ms −1 (Figures 6d 
and 6f), the near-surface air specific humidity attenuated by 0.4–1.2 gkg −1 (Figures 6g and 6i), the latent heat 
flux significantly decreased by 80–160 Wm −2 (Figures 6j and 6l) and the sensible heat flux obviously weakened 
by 40–80 Wm −2 (Figures 6m and 6o) over the LNC area compared to the CTL simulations, suggesting that LNC 
played an important role in heating and moistening the lower atmosphere which provided favorable thermal and 
water vapor conditions for the formation of this extreme snowstorm. When the cold air moves across LNC with 
much warmer and moister surface, the strong lake-air temperature difference leads to intense instability of lower 
atmosphere, which favors triggering convection and thereafter precipitation significantly increases over down-
wind regions (Figures 6j and 6l).

Removing the surrounding mountains of LNC mainly results in the near-surface air specific humidity increasing 
by up to 1.2 gkg −1 due to the reduction in altitude over the mountainous areas flattened in the EXP_NM and 
EXP_NLM experiments (Figures 6h and 6i). The absence of the surrounding terrain tends to decrease the surface 
wind speeds around the lake area, especially along the north slope of west NQTL removed in EXP_NM to the east 
shore of LNC (Figure 6e), which further slightly increases the temperature difference between surface and 2 m 
air but reduces the 2 m air specific humidity, latent and sensible heat fluxes over LNC (Figures 6h, 6k, and 6n).

Figure 7 further displays the impact of LNC and surrounding terrain on the circulation in the atmospheric bound-
ary layer. From Figure 7a, the northwest wind from north and southwest wind along the west NQTL merge over 
the western part of LNC and change to prevailing westerlies along the lake. Meanwhile, a strong convergence 
center can be noted in eastern LNC and near coastal areas. From Figures 7e and 7g, the removal of LNC leads to 
obviously weakened wind speeds over the lake due to the strengthened surface friction, and thereafter the conver-
gence is obviously reduced over the eastern part of LNC and downwind areas. It is also noted that the convergence 
along the north side of central NQTL is significantly weakened due to the absence of terrain blocking, downhill 
wind from west NQTL, and lifting for the westerlies moving from LNC (see the red box in Figure 7f). Without 
the interference of complex terrain, the southerly wind near Dangxiong County located at the southeastern foot of 
the central NQTL can intersect with the westerly wind to the north (see red boxes in Figures 7c and 7d), creating 
a narrow low-level jet zone over the downstream of LNC which further results in the precipitation center along 
the northwest slope of east NQTL (Figures 5b and 5c). Benefiting from the complimentary water vapor transport 
from the lake, the precipitation amount over the downstream of LNC simulated by EXP_NM is much higher 
than that simulated by EXP_NLM (Figures 5b and 5c) in spite of similar wind field patterns (Figures 7c and 7d).

Overall, the extreme snowstorm cannot be reproduced without the thermal effect of LNC (Figures 5a, 6d, 6j, 
and 6m) or the dynamic impact of NQTL (Figures 7f and 7g), which favors the formation of convergence in 
the atmospheric boundary layer over the precipitation center. Another possible reason for the formation of the 
convergence zone is that the land breeze circulation induced by the thermal contrast between lake and land weak-
ens the wind speed from lake to land (Gerken et al., 2013). In addition, the long east-west distance of LNC also 
gives the  dry and cold air masses sufficient time to absorb water vapor and energy, and finally triggers convective 
storms before they leave the heat and water vapor source (Alcott & Steenburgh, 2013; Onton & Steenburgh, 2001; 
Umek & Gohm, 2016).

As shown in Figure 8a, extremely large vertical equivalent potential temperature gradients appear over LNC. 
During the extreme snowstorm, LNC with a much warmer surface relative to surrounding land constantly 
provides sufficient latent and sensible heat to create a warm and moisture pool and strong convective instability 
(∂θe/∂z < 0) within 300 m above the lake, which alters the structure of the planetary boundary layer and contin-
uously supplies water vapor and energy for the convective storms. The convergence at the land-lake junction 
together with the topographic uplifting along the downstream windward slope results in the intensive vertical 
upward motion extending from the boundary layer to the level of 7,000 m over the wide range of the eastern 
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Figure 6.  Spatial distribution of the differences in surface-2 m temperature difference, 10 m wind speed, 2 m air specific humidity, surface latent and sensible heat 
fluxes simulated by each sensitive experiment from the CTL simulations averaged over 03:00–09:00 LST on 24 October 2006. Contours show the terrain height.
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Figure 7.  Spatial distribution of the simulated wind vector and divergences (shaded) at 150 m above ground level and their 
differences between each sensitive experiment and CTL experiment averaged over 03:00–09:00 LST on 24 October 2006. 
Contours show the terrain height.
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LNC and downwind areas, which further leads to large precipitation centers over eastern LNC and downstream 
(Figure 4b). The EXP_NL experiment without considering the impact of LNC fails to reproduce the low-level 
convective instability layer over the lake (Figure 8b) due to the much drier and colder lower atmosphere compared 
to the CTL simulation (Figure 9a) and thereafter the precipitation center in the eastern LNC and near lake shore 
areas (Figures 4b and 5a). The topographic uplifting of the prevailing westerlies at most layers below 7,000 m led 
to the vertical upward motions in the lower atmosphere along the windward slope of the east NQTL (Figure 8b) 
where the precipitation center can be partially simulated despite the underestimated intensity (Figures 5a and 5d), 
which is resulted from the dry subsidence zone over the east NQTL due to the significantly weakened upward 
motion over upstream LNC relative to the CTL simulation (Figure 9a).

The scope of upward motions induced by LNC simulated by the EXP_NM experiment without the downstream 
topography but the LNC included is mainly confined over the eastern LNC (Figure 8c), which corresponds well 
to the convergence zone and precipitation center over the lake (Figures 5b and 7c). Meanwhile, the existence of 
LNC can moisten and heat the dry and cold air moving across the much warmer lake surface, the moistened air 
with sufficient water vapor can be transported by the westerlies to the downstream areas, so the precipitation 
center over east NQTL can be reproduced to some extent (Figures 5b and 7c). However, compared to the CTL 
simulations, the EXP_NM experiment without the NQTL blocking and merging effects produces slightly weak-
ened sensible and latent heat from LNC to the overlying atmosphere (Figures 6e, 6h, 6k, and 6n), which further 
leads to the relatively drier and colder atmosphere over LNC with an anomalous subsidence zone over the east 
LNC and near lake shore areas (Figures 7f and 9b). In addition, the absence of NQTL uplifting leads to a strong 
anomalous subsidence zone and thereafter significantly decreased precipitation over the mountainous areas south 

Figure 8.  The vertical cross section of the modeled relative humidity (units: %, shaded), equivalent potential temperature (units: K, contours) and longitudinal 
circulation (vector, the vertical velocity was enlarged by 10 times) along the A–B red line in the inset of (a) averaged over 03:00–09:00 LST on 24 October 2006. The 
gray thick solid lines denote the location of Lake Nam Co and the brown shadings indicate the model topography in each experiment.



Journal of Geophysical Research: Atmospheres

ZHAO ET AL.

10.1029/2021JD036190

15 of 20

of the precipitation belt (Figure 5e). Compared to the CTL simulations (Figure 8a), the EXP_NLM experiment 
without the LNC and NQTL produces prevailing westerlies (Figure 8d) with much colder and drier anomalies 
extending from the atmospheric boundary layer to the altitude of 6,000 m over LNC and anomalous subsidence 
motions over east NQTL (Figure 9c), leading to the failed simulation of the extreme snowstorm center (Figures 5e 
and 5f).

Figure 9.  Same as Figure 8, but for the differences in the specific humidity (green contour lines, units: gkg −1), equivalent 
potential temperature (shading) and longitudinal circulation (vector, the vertical velocity was enlarged by 10 times) simulated 
by each sensitive experiment from the simulation of CTL experiment.
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Overall, the low-level instability induced by the hydrothermal effect of LNC and topographic uplifting triggered 
by the dynamic effect of east NQTL dominate the extreme snowstorm that occurred sequentially over the lake and 
the slope of east NQTL. The dry and cold subsidence anomalies resulting from either the removal of LNC or the 
absence of surrounding orography (Figure 9) are not conducive to the formation of precipitation (Figures 5d–5f). 
Meanwhile, surface wind speed differences over the lake shore areas by lake-land friction contrast (Figures 9a 
and 9c) may be an additional reason for the air convergence over downwind land (X. Yao et al., 2021).

4.  Summary and Discussion
In this study, the influence of LNC and surrounding orography on the extreme snowstorm on 24 October 2006 
was investigated using the WRF model. From the observed data, under the large-scale environmental conditions 
featured by a low vortex system and westerly winds, more than 25 mm of accumulated precipitation was produced 
over eastern LNC and downstream area. The assessment of the control experiment showed that the simula-
tion reasonably captured the quantitative and spatial distribution characteristics of this extreme snowstorm. By 
comparing the results from three sensitivity experiments with the control experiment, we revealed the respective 
contribution of LNC and surrounding topography and their combined contribution to the extreme snowstorm.

The main physical processes affecting this extreme snowfall event over Nam Co basin include: low-level insta-
bility caused by high lake-atmosphere temperature difference; westerly winds over the lake surface dominated by 
a combination of large-scale background circulation and mountain winds from west NQTL; low-level wind field 
blocked and deflected by the southwest-northeast trend of the mountain range; lake-effect convective snowfall 
triggered by water vapor convergent upward motion over the southeast lake shore; and precipitation enhancement 
on the slope of east NQTL by the orographic lifting in downstream of the lake (Figure 10).

Sensitive experiments suggest that the formation of extreme snowfall over Nam Co basin is determined by the 
combined effects of the LNC and surrounding topography, with the lake-induced thermodynamic effect being the 
dominant factor and the orographic dynamic effect being secondary. LNC releases a large amount of latent and 
sensible heat fluxes and further forms convective instability, which favors to trigger convective snowstorm. While 
the surrounding topography adjusts the intensity and extent of precipitation on the basic pattern of lake-induced 
snowfall. The upstream topography of the subsidence zone strengthens the wind field over LNC before the onset 
of snowfall, and the downstream topography lifts the moistened air to create an extra precipitation center. Mean-
while, the dynamic effect of lake such as lake-land roughness contrast and the thermodynamic effect of orography 
such as valley wind circulation are also factors influencing the precipitation distributions.

Figure 10.  Schematic diagram of the influence mechanisms of the extreme snowfall event on 24 October 2006. Gray arrows 
denote wind field in the lower layer and yellow arrow indicates updraft and convection. Red and blue arrows denote heat and 
moisture transport from the lake surface to the overlying air. Rain clouds indicate precipitation centers and the sizes of them 
represent the intensities.
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In addition, the interaction of lake and orography is not a simple linear summation but a coupled structure affect-
ing the mesoscale circulation and transport of water vapor. Interestingly, it cannot completely suppress the forma-
tion of snowfall (reduced by 68%, see Table 1 and Figure 5c) when both LNC and the surrounding topography 
were removed, and the reason for which may be related to large-scale advection and transport.

The orographic effect in Nam Co basin is not consistent with the previous study. Umek and Gohm (2016) suggested 
that additional downstream topographic lifting is still required to trigger convection when the lake meets thermal 
conditions. The small size of Lake Constance (∼540 km 2) and the fact that lake surface temperature during the 
blizzard is only 5°C higher than 2 m temperature (9°C for LNC), making the downstream topography particularly 
important in this event. However, the hydrothermal conditions of LNC with an area ∼2,000 km 2 in this study are 
more adequate than those of Lake Constance, therefore harsh lifting conditions are not necessary required. Part 
of the released energy near the lake shore triggers convection, followed by a second uplift in the downstream 
orography such that the two precipitation centers are produced.

The climatic analysis identifies the area with a large precipitation amount on the downstream topography of LNC 
(east NQTL) in autumn (J. Xu et al., 2018). Based on the results mentioned above, it can be speculated that this 
is closely related to a long-term forcing caused by the westerly winds on TP and the funnel-like morphology of 
the Nam Co basin, which was proven by air trajectory analysis (figure not show). Numerous studies have referred 
to the contribution of large-scale conditions to lake-effect extreme precipitation (Alcott & Steenburgh, 2013; 
Shestakova & Toropov,  2021). However, few studies have focused on primary synoptic backgrounds during 
extreme events over lakes and surrounding areas on TP (Suriano & Leathers, 2017a, 2017b). This case study 
can recognize the effects of the lake and surrounding orography on extreme precipitation events to some extent, 
but advanced studies on climatology time scale are necessary for the generalizability of the conclusions. Reveal-
ing the roles and influence mechanisms of the lakes and complex topography in the central TP under different 
synoptic patterns in extreme precipitation events (Tang et al., 2021) is beneficial to further improve the refined 
forecasting of the extreme precipitation/snow over lake rich areas on TP.
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