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Abstract
The impact of the observed sea surface temperature (SST) frequency in the model initialization on the prediction of the boreal 
summer intraseasonal oscillation (BSISO) over the Western North Pacific (WNP) is investigated using the Beijing Climate 
Center Climate System Model. Three sets of hindcast experiments initialized by the observed monthly, weekly and daily 
SST data (referred to as the Exp_MSST, Exp_WSST and Exp_DSST, respectively) are conducted with 3-month integration 
starting from the 1st, 11th, and 21st day of each month in June–August during 2000–2014, respectively. The results show 
that the useful prediction skill of BSISO index reaches out to about 10 days in the Exp_MSST, and further increases by 1–2 
days in the Exp_WSST and Exp_DSST. The skill differences among various hindcast experiments are especially apparent 
during the forecast time of 6–20 days. Focusing on the strong BSISO cases in this period, the BSISO activity and its related 
moist static energy (MSE) characteristics over the WNP are further diagnosed. It is found that from the Exp_MSST to the 
Exp_WSST and Exp_DSST, the enhanced BSISO prediction skill is associated with the more realistic variations of intra-
seasonal MSE and its tendency. Among the various budget terms that dominate the MSE tendency, the surface latent heat 
flux and MSE advection are evidently improved, with reduction of mean biases by more than 21% and 10%, respectively. 
Therefore, the better reproduced MSE variation may contribute to the more skillful BSISO forecast through improving the 
surface evaporation as well as atmospheric convergence and divergence that related to the BSISO activity. Our findings 
suggest the necessity of increasing the observed SST frequency (i.e., from monthly to weekly or daily) in the initialization 
process of coupled models to enhance the actual BSISO predictability, since some current subseasonal forecast operations 
and researches still use relatively low-frequency SST observations for the model initialization.
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1  Introduction

The boreal summer intraseasonal oscillation (BSISO) is an 
essential mode of atmospheric variability with a period of 
10–60 days over the Asian summer monsoon region (Yasu-
nari 1980; Zhu and Wang 1993). The BSISO correlates 
with the monsoon dynamics (Yasunari 1979; Lau and Chan 
1986), tropical cyclone activity (Liebmann et al. 1994; 
Weng and Hsu 2017) and the El Niño-Southern Oscillation 
(Ding and Wang 2005; Lin 2019) and can result in severe 
weather and climate events (such as rainfall extremes and 
heat waves) over the Western North Pacific (WNP) region 
(Mao et al. 2010; Ren et al. 2013; Hsu et al. 2016, 2017). 
Due to its recurrent nature (Van den Dool and Saha 1990) 
and association with the tropical and extratropical atmos-
pheric circulations (Ding and Wang 2005), the BSISO acts 
as a leading source of subseasonal predictability over the 
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WNP (Waliser et al. 2003; Vitart et al. 2012; Hsu et al. 
2017; Fang et al. 2019).

Despite great progress in the climate model develop-
ment, the capability in BSISO simulation and prediction 
is still limited (Waliser et al. 2003; Sobel et al. 2008; Fang 
et al. 2016). Most current models show deficiency in simu-
lating the spatial structure, amplitude, evolution and north-
ward propagation of BSISO (Sabeerali et al. 2013; Hu 
et al. 2017; Neena et al. 2017). In the latest Subseasonal 
to Seasonal (S2S) Prediction Project, most state-of-the-art 
operational models exhibit useful BSISO forecast skill of 
about 2 weeks in advance (Jie et al. 2017). This skill is 
much lower than the potential BSISO predictability limit 
of about 5 weeks (Ding et al. 2011). Using the hindcasts 
by several models in the Intraseasonal Variability Hind-
cast Experiment (ISVHE) project, Lee et al. (2015) also 
found that the multi-model mean actual prediction skill is 
clearly lower than the theoretical predictability of BSISO, 
indicating that there is large room to improve the BSISO 
prediction.

The prediction of intraseasonal oscillation is found to 
be sensitive to many factors, such as physical parameteri-
zation (e.g., Liu et al. 2019), model resolution (e.g., Vitart 
2017), ensemble generation (e.g., Rashid et al. 2011), air-
sea interaction (e.g., Fu et al. 2008) and initial conditions 
(e.g., Liu et al. 2017; Bo et al. 2020). Among these fac-
tors, SST initial condition and its impact have drawn much 
attention. The atmosphere-only model is comparable to 
its coupled counterpart in the predictability and predic-
tion skill of intraseasonal oscillation if specified with daily 
SST forecasted by the coupled run (Fu et al. 2008, 2013). 
Abhilash et al. (2014) found that the bias-corrected SST 
has great influence on the BSISO prediction at the 10–20-
day extended range scale. Wang et al. (2015) noted that the 
uncertainty of observed SST data could exert important 
impact on the prediction of tropical intraseasonal oscilla-
tion beyond the forecast time of 5 days. Liu et al. (2017) 
and Bo et al. (2020) also showed that the prediction skill of 
intraseasonal oscillation can be increased by the updated 
SST initial conditions beyond the forecast time of 5 days. 
Some studies further explored that the mean state, tem-
poral and spatial resolution of SST included in the model 
initialization could affect the prediction of intraseasonal 
oscillation (e.g., Wang et al. 2009; Seo et al. 2014; Zhang 
et al. 2019).

Previous studies mostly based on the atmosphere-only 
models have suggested that adopting the SST observations 
with relatively higher temporal frequency during the model 
initialization can improve the model performance in captur-
ing the intraseasonal variability. Simulations with daily SST 
forcing show improvements against those with monthly SST 
forcing in terms of periodicity, intensity and propagation of 
intraseasonal oscillation (Fu and Wang 2004; Fu et al. 2003; 

Klingaman et al. 2008; Pegion and Kirtman 2008). Stan 
(2018) revealed that the inclusion of 1–5-day frequency of 
SST forcing is essential to the accurate simulation of intrase-
asonal oscillation. Zhang et al. (2019) noted that the experi-
ments with prescribed daily SST forcing exhibit higher pre-
diction skill of BSISO than those with seasonal SST forcing. 
Kim et al. (2008) and Boisséson et al. (2012) also found 
that the forecast skill of tropical intraseasonal oscillation is 
higher when forcing model with daily or weekly SST than 
with monthly SST.

To investigate the impacts of observed SST frequency in 
the model initialization on the subseasonal prediction, pre-
vious studies focused more on the intraseasonal oscillation 
during boreal winter than in boreal summer. Additionally, 
most of these studies used atmosphere-only models rather 
than coupled models. Given the importance of ocean-atmos-
phere coupling to the representation of intraseasonal oscil-
lation, it is worth further exploring the effect of SST initial 
condition on the BSISO prediction using multi-component 
coupled models. Meanwhile, exploring the influence of 
observed SST frequency in the model initialization is also 
a demand for the practice in dynamical climate forecasts. 
This is because the initialization of forecast model needs to 
determine the temporal frequency of SST data when adopt-
ing nudging scheme or the size of time window for assimila-
tion analysis. In this context, this study conducts a series of 
hindcast experiments using a coupled model to address the 
following questions: (1) Whether and to what extent increas-
ing the frequency of SST observations in the model initiali-
zation process could improve the prediction skill of BSISO 
over the WNP? (2) What are the possible pathways for the 
impact of observed SST frequency in the model initialization 
on the BSISO forecast?

The rest of this paper is organized as follows. The model, 
data, experimental design and methods are described in 
Sect. 2. Section 3 provides the evaluation of model perfor-
mance in the long-term free run simulation of BSISO. Sec-
tion 4 examines the BSISO prediction skills in the hindcast 
experiments initialized by the SST observations with differ-
ent temporal frequencies, and Sect. 5 gives the diagnostics 
of moist static energy budget for BSISO forecasts in various 
experiments. The summary and discussion are provided in 
Sect. 6.

2 � Model, data, experimental design, 
and methods

2.1 � Model

The model used in this study is the Beijing Climate 
Center Climate System Model version 2 (BCC-CSM2) 
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with moderate resolution. It is a fully coupled model with 
atmosphere, land, ocean and sea ice components. The 
atmospheric component is the BCC Atmospheric General 
Circulation Model version 2 with a horizontal resolution of 
T106 (approximately 110 km) and 56 vertical hybrid sigma/
pressure layers (Wu et al. 2019). The land component is the 
BCC Atmosphere and Vegetation Interaction Model Version 
2 with T106 triangular truncation (Li et al. 2019). The ocean 
and sea ice components adopt the Modular Ocean Model 
Version 4 (Griffies et al. 2005) and the Sea Ice Simulator 
(Winton 2000) from the National Oceanic and Atmospheric 
Administration (NOAA) Geophysical Fluid Dynamics Labo-
ratory (GFDL) respectively, with a horizontal resolution of 
1/3°–1° at tripolar grid.

The BCC-CSM2 is one of the members in the Coupled 
Model Intercomparison Project Phase 6 (CMIP6). More 
details about BCC-CSM2 and its application in climate pro-
jection are documented in Wu et al. (2019). Several earlier 
versions of this model have been widely used in the S2S 
and seasonal-to-interannual climate predictions (e.g., Huang 
et al. 2013; Liu et al. 2015, 2017, 2019; Fang et al. 2019; 
Bo et al. 2020).

2.2 � Data

To initialize the model for climate prediction, the follow-
ing datasets from 2000 to 2014 are used: (1) the 6-hourly 
atmospheric winds, temperature, humidity, and surface 
pressure fields from the National Center for Environmental 
Prediction’s Final Operational Global Analysis (NCEP-FNL; 
Kalnay et al. 1996), which are available at https://​rda.​ucar.​
edu/​datas​ets/​ds083.2/; and (2) the daily SST from NOAA 
Optimum Interpolation Sea Surface temperature (OISST) 
dataset (Reynolds et al. 2007), which can be obtained from 
https://​www.​ncdc.​noaa.​gov/​oisst.

In addition, we use several datasets during 2000–2014 
to evaluate the model results as follows: (1) the daily out-
going longwave radiation (OLR) from NOAA (Liebmann 
and Smith 1996), which is available at https://​catal​og.​data.​
gov/​datas​et/​noaa-​daily-​outgo​ing-​longw​ave-​radia​tion-​olr; (2) 
the daily precipitation from the Global Precipitation Cli-
matology Project (GPCP; Adler et al. 2003), which can be 
downloaded at https://​www.​ncdc.​noaa.​gov/​cdr/​atmos​pheric/​
preci​pitat​ion-​gpcp-​daily; and (3) the daily wind, tempera-
ture, geopotential height, specific humidity, longwave and 
shortwave radiative heating, surface latent heat and surface 
sensible heat fields from the European Centre for Medium-
Range Weather Forecasts (ECMWF) Reanalysis 5 (ERA5; 
Hersbach et al. 2020), which are available at https://​www.​
ecmwf.​int/​en/​forec​asts/​datas​ets/​reana​lysis-​datas​ets/​era5.

2.3 � Experimental design

To conduct the S2S prediction, the model initial conditions 
are firstly obtained by three sets of initialization experiments 
based on a nudging strategy. As shown in Fig. 1, during the 
initialization process, the atmospheric component is nudged 
toward 6-hourly NCEP-FNL atmospheric reanalysis, while 
the ocean component is nudged toward monthly/weekly/
daily SST observations derived from the daily OISST data 
(i.e., raw OISST data is averaged over time window with 
monthly, weekly, or daily interval). The SST observations 
with different frequencies (i.e., daily, weekly and monthly) 
used for the three sets of initialization experiments in 2001 
are shown as an example in Fig. 2. It is obvious that the 
SST with high frequency displays larger variability than that 
with low frequency (Fig. 2a). This SST difference in the 
initialization experiments may have distinct impacts on the 
predictions of rainfall and circulation. For example, for the 
forecast case starting from 1 August 2001, the use of higher-
frequency SST observations in the initialization experiment 
clearly improves the skill of rainfall prediction at long fore-
cast time (Fig. 2b). The initialization experiments nudged by 
monthly, weekly, or daily SST observations are all integrated 
from 1 January 2000 to 31 December 2014 to output com-
patible model initial conditions at each day for the hindcast 
experiments shown below. More detailed descriptions of the 
initialization scheme can be found in Liu et al. (2017).

We then carry out three sets of hindcast experiments 
named Exp_MSST, Exp_WSST and Exp_DSST, respec-
tively, and the initial conditions of each hindcast experiment 
is derived from the output of the corresponding initialization 
experiments with monthly, weekly, or daily SST observa-
tions. The hindcasts are conducted with 3-month forecast 
integration starting from the 1st, 11th, and 21st day of each 
month in June–August during 2000–2014. To reduce the 
uncertainty of initial condition, a simple ensemble scheme 
based on lagged average forecasting strategy is adopted in 
each forecast case, with four ensemble members using the 
initial conditions at 00:00 UTC of the forecast day, 18:00 
UTC, 12:00 UTC and 06:00 UTC of the previous day, 
respectively. The ensemble scheme in current study is simi-
lar to the previous studies (e.g., Xiang et al. 2015; Liu et al. 
2017; Bo et al. 2020). Therefore, there are 135 forecast cases 
with four ensemble members in each hindcast experiment. 
The following analysis is based on the ensemble mean fore-
cast from each hindcast experiment.

In addition, a 15-year free run simulation is conducted to 
examine the model capability in simulating the BSISO char-
acteristics. Both the simulation and prediction mentioned 
above adopt the greenhouse-gas external forcing that are 
identical to those in the CMIP5 historical simulation.

https://rda.ucar.edu/datasets/ds083.2/
https://rda.ucar.edu/datasets/ds083.2/
https://www.ncdc.noaa.gov/oisst
https://catalog.data.gov/dataset/noaa-daily-outgoing-longwave-radiation-olr
https://catalog.data.gov/dataset/noaa-daily-outgoing-longwave-radiation-olr
https://www.ncdc.noaa.gov/cdr/atmospheric/precipitation-gpcp-daily
https://www.ncdc.noaa.gov/cdr/atmospheric/precipitation-gpcp-daily
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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2.4 � Methods

To extract the BSISO signal over the WNP, the real-time 
multivariate BSISO indices are applied following previ-
ous studies (e.g., Lin 2012; Lee et al. 2013). The observed 
BSISO indices are defined as the first two principle com-
ponent time series (PC1 and PC2) of Empirical Orthogo-
nal Function (EOF) modes of combined intraseasonal 
anomalies of OLR and 850-hPa zonal wind (U850), which 
are zonally averaged along 90–150 °E during 1 May to 30 
September over 2000–2014 (Lin 2012, 2019). Before the 
EOF analysis, the observed intraseasonal anomalies are 
obtained by removing the seasonal cycle climatology and 
the anomaly averaged over the preceding 120 days. Simi-
larly, the forecasted intraseasonal anomalies are computed 
by removing the forecasted climatology and the anomaly 
averaged over the previous 120 days, with corresponding 
observed anomalies appended before the initial date of 
forecast. Then the predicted BSISO indices are calculated 
by projecting the forecasted intraseasonal anomalies onto 
the observed EOF modes. The bivariate anomaly correla-
tion (BAC) and bivariate root mean square error (RMSE) 
are computed to measure the prediction skill of BSISO 
indices against the observations (e.g., Lin et al. 2008; 
Rashid et al. 2011).

To investigate the physical processes regulating the BSISO 
convection, the moist static energy (MSE) budget is utilized 
following previous studies (e.g., Kiranmayi and Maloney 

2011; Maloney 2009). The column-integrated MSE ( ⟨m⟩ ) 
is defined as

 where T, Z and q are air temperature (unit: K), geopotential 
height (unit: gpm) and specific humidity (unit: kg kg− 1), 
respectively; Cp is heat capacity of dry air at constant pres-
sure (1004 JK− 1 kg− 1), g is gravitational acceleration (9.8 
ms− 2), and Lv is the latent heat of condensation (2.5×106 
Jkg− 1). Angled brackets represent the mass-weighted verti-
cal integration from 1000 to 100 hPa. Following Neelin and 
Held (1987), the MSE budget equation is defined as

 where V is the horizontal wind vector (unit: ms− 1), ω is 
vertical pressure velocity (unit: Pa s− 1), and p is pressure 
(unit: Pa); �⟨m⟩∕�t (unit: Wm− 2) is the tendency of ⟨m⟩ 
(unit: Jm− 2); −⟨V ⋅ ∇m⟩ and −⟨� ⋅ �m∕�p⟩ (unit: Wm− 2) are 
the horizontal and vertical advection of ⟨m⟩ , respectively; 
LW and SW represent the longwave and shortwave radiative 
heating, and their column-integrated values (i.e., ⟨LW⟩ and 
⟨SW⟩ ) (unit: Wm− 2) are derived from the differences of net 
fluxes between the bottom and top of atmosphere, respec-
tively; LH and SH (unit: Wm− 2) denote the surface latent 
heat and sensible heat fluxes, respectively. As discussed in 
previous studies (e.g., DeMott et al. 2016; Gao et al. 2019), 

⟨m⟩ = ⟨CpT⟩ + ⟨gZ⟩ + ⟨LVq⟩

�⟨m⟩

�t
= −⟨V ⋅ ∇m⟩ − � ⋅ ⟨

�m

�p
⟩ + ⟨LW⟩ + ⟨SW⟩ + LH + SH

Fig. 1   Schematic diagram of the 
experimental design
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the MSE budget terms affect the maintenance ( ⟨m⟩ ) and 
propagation ( �⟨m⟩∕�t ) of BSISO convection.

3 � Evaluation of BSISO characteristics 
in the free run

In this section, we evaluate the model performance in cap-
turing the basic feature of BSISO over the WNP region 
in a 15-year free run simulation. Figure 3 shows the spa-
tial distribution of climatological mean precipitation and 
850-hPa wind during June–August. The model can basi-
cally capture the position of observed maximum centers 
of summer precipitation and low-level wind, but with clear 
biases in the amplitude (Fig. 3a, b). Large wet biases occur 
at the west coast of Indian Subcontinent and Indo-China 
Peninsula, associated with the overestimated westerlies 
over these regions (Fig. 3c). These wet biases can also be 
found in the older versions of the BCC model and other 

climate models (e.g., Kim et al. 2008; Liu et al. 2014; 
Liu et al. 2015; Hu et al. 2017). Additionally, small wet 
biases and weak easterly wind biases appear in the east of 
Maritime Continent. Such wind biases are contrary to the 
westerly biases found in the earlier versions of the BCC 
model (e.g., Liu et al. 2015; Jie et al. 2017).

The spatial distribution of standard deviation of 
intraseasonal precipitation and U850 anomalies during 
June–August is given in Fig. 4. In the observation, the 
precipitation field shows two strong variance centers near 
the Indian Subcontinent and the WNP (Fig. 4a), whereas 
the U850 field displays a relatively different pattern with 
maximum variability over the WNP and a secondary maxi-
mum over the tropical Indian Ocean (Fig. 4f). The simu-
lated variances of precipitation and U850 generally agree 
well with the observations. However, for both precipita-
tion and U850 fields, the magnitude of variance is clearly 
overestimated, especially over the Indian Subcontinent, 
Indo-China Peninsula and east of the Philippines in the 
tropical WNP. The overestimated intraseasonal variances 
of precipitation and U850 over these regions also exist 
in the earlier versions of the BCC model (e.g., Liu et al. 
2014; Hu et al. 2017), probably due to the deficiencies in 
parameterizations of convection and cloud physical pro-
cess over the tropics.

Figure 5 depicts the spatial structure of the leading two 
EOF modes of the combined intraseasonal anomaly fields 
of OLR and U850. In the observation, the EOF1 mode is 
characterized by a deep convection center around 15 °N, 
whereas the EOF2 mode exhibits a dipole structure with 
enhanced convection near 20 °N and suppressed convec-
tion near 10 °N. For both the EOF1 and EOF2 modes, 
easterly (westerly) zonal wind anomalies prevail to the 
north (south) of the strong positive convection center. The 
two EOF modes are in a close quadrature relationship with 
a joint contribution of about 46 % to the total variance. 
The leading two EOF modes of simulations generally 
resemble the observations, whereas the simulated EOF2 
mode shows an erroneous strong convection around 5°S. 
In addition, the total explained variance of the EOF1 and 
EOF2 modes in the simulation is about 30 %, which is 
lower than that in the observation. Note that these biases 
of BCC-CSM2 are slightly larger than those of its earlier 
version BCC-CSM1.2 (Bo et al. 2020), and the reason for 
the degradation is worth further investigation but beyond 
the scope of this study.

Figure 6 further shows the composite intraseasonal anom-
alies of precipitation and 850-hPa wind during the BSISO 
lifecycle, which is divided into eight phases according to 
different angles between PC1 and PC2 (Lin 2012; Lee et al. 
2013), and the composite is performed when the BSISO 
amplitude is larger than 1. In the observation, the BSISO 
rainband is tilted northwest-southeastward and exhibits an 

Fig. 2   a Time series of the SST observations (unit: °C) with dif-
ferent frequencies regionally averaged over the area (10–20  °N, 
130–140  °E) during June–August 2001 in the initialization process 
of various initialization experiments. b Time series of the precipita-
tion (unit: mm day− 1) regionally averaged over the area (10–20  °N, 
130–140  °E) in observations and hindcasts starting from 1 August 
2001. The decimals shown in the brackets are temporal correlation 
coefficients (COR) and root mean square errors (RMSE) between the 
observations and hindcasts during the forecast time of 1–20 day
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obvious northward propagating feature (Fig. 6a). The BSISO 
convection initiates over the equatorial eastern Indian Ocean 
in phase 1, migrates northward to the Bay of Bengal and 
northeastward to the Gulf of Thailand and equatorial western 
Pacific in phase 2, develops rapidly over the South China 
Sea and east of the Philippines in the tropical WNP in phase 
3, further moves northward to the subtropical WNP during 
phases 4–6, and finally dissipates over the south China dur-
ing phases 7–8. Meanwhile, zonally-elongated anomalous 
cyclonic (anti-cyclonic) circulation appears to the north 
of the enhanced (suppressed) convection. The composite 

intraseasonal anomaly of OLR in each BSISO phase is 
generally consistent with that of precipitation (figure not 
shown).

The model can reasonably reproduce the northward 
movement of convection and circulation anomalies from 
equatorial Ocean to south China but with some biases in 
the location and amplitude of convection center (Fig. 6b) 
compared to the observations (Fig. 6a). The BSISO rain-
band over WNP is located more northward in simulation 
than in observation. This may be related to the faster-
than-observed northward propagation of BSISO signal, 
which also exists in the earlier versions of the BCC model 

Fig. 3   Spatial distribution of 
climatological mean precipita-
tion (shaded) and wind at 850-
hPa (vector) in June–August 
during 2000–2014 for a obser-
vations, b free run simulations 
and c differences between them 
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(e.g., Fang et al. 2019; Bo et al. 2020). The amplitude of 
enhanced (suppressed) convection center over the WNP is 
underestimated when the BSISO is in phases 3–6 (phases 
7, 8, 1 and 2) (Fig. 6). The underestimated precipitation 
anomalies are also evident in the tropical Indian Ocean. In 
addition, near the west coast of Indo-China Peninsula, the 
precipitation anomalies are overestimated in most phases, 
especially phases 5 and 8, corresponding to the much over-
estimated intraseasonal variance of precipitation over the 
same areas (Fig. 4b). It is also noted that the wind direc-
tion over Bay of Bengal in phase 3 in the model is almost 
reversed compared to observations, denoting apparent cir-
culation biases in some areas.

The lifecycle composites of intraseasonal SST anomaly 
for different BSISO phases are given in Fig. 7. Along with 
the evolution of BSISO convection, the SST anomaly also 
shows an evident northward propagation. Over the tropical 
WNP region, significant positive (negative) SST anomalies 
are found in phases 1, 2 and 8 (4–6) when the BSISO con-
vection is suppressed (enhanced). The model results gener-
ally agree with the observations. However, the simulated 
SST anomaly center over the WNP extends more northward 
with reduced magnitude than the observation, corresponding 
to the feature of simulated BSISO convection (Fig. 6). Addi-
tionally, the pattern correlation of SST anomalies between 
the simulation and observation over the Asian-Pacific region 

Fig. 4   Spatial distribution of 
standard deviation of intrasea-
sonal precipitation (left panel) 
and 850-hPa zonal wind (right 
panel) anomalies from (a, f) 
observations, (b, g) free run 
simulations and (c–e, h–j) hind-
casts in June–August during 
2000–2014. The results in c–e 
and h–j are derived from the 
3-month-integration forecasts 
starting from 1 June in each 
year during 2000–2014. The 
decimals shown in brackets are 
the pattern correlation coeffi-
cients between the observations 
and simulations or hindcasts
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(10 °S–40 °N, 60 °E–180 °E) is nearly zero in phase 7, 
apparently lower than those of about 0.4–0.6 in other phases. 
This indicates that the model can hardly capture the intra-
seasonal variation of SST when the BSISO convection over 
the tropical WNP is at the transition from wet to dry spell.

4 � Forecast skill of BSISO

The predicted standard deviations of summer intraseasonal 
precipitation and U850 in the three sets of hindcast experi-
ments are also given in Fig. 4. For both precipitation and 
U850 fields, there is no significant differences among the 
three sets of hindcast experiments, though the Exp_WSST 
and Exp_DSST produce slightly stronger variance than 
the Exp_MSST over the tropical WNP especially near the 
Philippines. Similar to the feature in the free run simulation 
(Fig. 4b, g), the large variance centers over the Indian Land-
mass, Indo-China Peninsula and tropical WNP are overes-
timated in all sets of hindcast experiments (Fig. 4c–e, h–j). 
This indicates that the overestimation of summer intrasea-
sonal variance in the predictions may arise from the sys-
tematic errors of model itself, and it can hardly be reduced 
by only using the high-frequency observed SST data in the 
model initialization process.

The overall prediction skill, measured by BAC and 
RMSE between the observed and predicted BSISO indices, 

as a function of forecast time is given in Fig. 8. Taken the 
BAC = 0.5 or RMSE = 1.414 as the threshold of useful pre-
diction skill (e.g., Lin et al. 2008; Rahid et al. 2011), the 
Exp_MSST can predict the BSISO up to around 10 days 
in advance. With relatively higher-frequency observed SST 
data included in the model initialization, the Exp_WSST 
and Exp_DSST further improve the useful BSISO predic-
tion skill by about 1–2 days compared to the Exp_MSST. 
The useful skill of BSISO prediction in the Exp_WSST and 
Exp_DSST is comparable to that in the hindcast experi-
ments of Bo et al. (2020), who also used high-frequency 
OISST SST observations to initialize the earlier version of 
the BCC model (i.e., BCC-CSM1.2). This emphasizes the 
importance of SST initial conditions for the BSISO predic-
tion. In addition, compared to the BCC-CSM1.2 in previous 
studies (Jie et al. 2017; Bo et al. 2020), the model in this 
study degrades the BSISO spatial modes in the simulation 
but achieves similar skills in the BSISO prediction as before. 
This suggests that the model performance in the simulation 
of intraseasonal oscillation does not necessarily determine 
the skill of subseasonal prediction, consistent with the find-
ings of Klingaman et al. (2015) and Liu et al. (2019).

In addition, during the first 5-day (i.e., 1-pentad) fore-
cast time, the three sets of hindcast experiments exhibit 
comparable prediction skills (Fig.  8a). However, dur-
ing the forecast time of 6–20 days (i.e., 2–4 pentads), the 
Exp_WSST and Exp_DSST show slightly higher skill than 

Fig. 5   The first two leading EOF modes of the combined intraseasonal anomalies of outgoing longwave radiation and 850-hPa zonal wind in the 
a, b observations and c, d free run simulations. The variance explained by each EOF mode is given at the top right of each panel
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the Exp_MSST. This indicates that the atmospheric initial 
condition plays a dominant role in the BSISO prediction 
within the first pentad, beyond which the impact of SST 
initial condition gradually emerges. This is consistent with 
the previous studies (e.g., Wang et al. 2015; Liu et al. 2017; 
Bo et al. 2020). Similar results can be obtained from the 
pattern anomaly correlation coefficients (PCCs) between the 
observed and predicted intraseasonal precipitation and 850-
hPa zonal wind fields over the WNP. From the Exp_MSST 
to the Exp_WSST and Exp_DSST, the PCCs of these two 

atmospheric variables are slightly increased during the fore-
cast time of 2–4 pentads (Fig. 8c, d). In fact, about 53% 
of forecast cases show overall enhanced PCCs during that 
time. In some particular forecast cases, the mean PCC of 
precipitation (U850) can even be increased by more than 0.3 
(0.5) (figure not shown). Note that the overall BAC, RMSE 
and PCCs of U850 in the Exp_DSST are slightly lower than 
that in the Exp_WSST beyond the forecast time of 5 days. 
This suggests that the closest-to-observed daily SST does 
not necessarily produce the optimal forecast results, possibly 

Fig. 6   Composite intraseasonal 
anomalies of precipitation 
(shaded) and 850-hPa wind 
(vector) as a function of BSISO 
phase in June–August during 
2000–2014 from the observa-
tions (left panel) and free run 
simulations (right panel). The 
composite is performed using 
the days when BSISO amplitude 
is larger than 1. The decimals 
shown in brackets are the pat-
tern correlation coefficients 
of intraseasonal precipitation 
anomalies between observations 
and free run simulations
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due to the high uncertainty of forecast under the complex 
interaction between model error and initial condition error.

Previous studies have demonstrated that the intraseasonal 
oscillation is more predictable in the strong-amplitude events 
than in the weak-amplitude events (e.g., Xiang et al. 2015; 
Fang et al. 2019). To further examine the prediction skill and 
skill differences among the three sets of hindcast experiments, 

strong and weak cases are selected according to the BSISO 
amplitude during the forecast time of 6–20 days. The strong 
BSISO cases are identified if the occurrences of the BSISO 
with amplitude larger than 1 are at least 10 days during the 
forecast time of 6–20 days, otherwise the weak BSISO cases 
are detected. Among the total 153 forecast cases, we identi-
fied 76 strong cases and 59 weak cases. The BAC skills for 

Fig. 7   Same as in Fig. 6, but 
for the intraseasonal anomalies 
of SST (shading) and precipita-
tion (contour). The magenta 
(green) contours represent 
positive (negative) anomalies of 
precipitation
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the strong and weak cases are given in Fig. 9. For the strong 
cases, the Exp_WSST and Exp_DSST increase the BAC by a 
maximum of about 0.1 during the forecast time of 6–20 days 
relative to the Exp_MSST, similar to the results of BAC for 
all cases (Fig. 8a). However, for the weak cases the three sets 
of hindcast experiments display relatively similar skills within 
the forecast time of 6–20 days. This indicates the superiority 
of high-frequency SST data to the low-frequency SST data in 
the model initialization is especially apparent in the prediction 
of strong BSISO events.

5 � Possible mechanisms

It is supposed that the MSE and its tendency at intraseasonal 
time scale can basically represent the maintenance and prop-
agation of BSISO convection (DeMott et al. 2016; Gao et al. 
2019). Thus, to investigate the possible physical processes 
related to the impacts of observed SST frequency in the 
model initialization on the BSISO prediction, we conduct 
an MSE budget diagnostic in this section. The diagnostic 
is based on the composite analysis of some strong BSISO 
cases, in which the three sets of hindcast experiments exhibit 
apparent skill differences as shown in the previous section.

Examination on the forecast cases in this study shows that 
the BSISO, with a relatively short periodicity of about 10–60 
days, evolves fast in the phase space (i.e., phase 1–8) and 

Fig. 8   The forecast skill as a function of the forecast time. Shown are 
the a bivariate anomaly correlation (BAC) and b bivariate root mean 
square error (RMSE) of BSISO index, and  the mean pattern anomaly 
correlation coefficients (PCC) of intraseasonal anomalies of c precipi-
tation and d 850-hPa zonal wind zonally averaged over the WNP (10 

°S–40 °N, 90–150 °E) between observations and predictions of each 
hindcast experiment. The dashed lines in (a) and (b) represent skill 
values of 0.5 and 1.414, respectively. PCCs larger than 0.23 are sig-
nificant at the 95% confidence level
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hardly stays in one particular phase for a long time (figure 
not shown). This indicates that the BSISO exhibits relatively 
quick propagation of convection anomaly over the WNP dur-
ing the forecast time of 1–20 days. Thus, to better reveal the 
impact of SST initial conditions on the BSISO evolution, the 
BSISO cases are divided into different categories according 
to the main characteristics of wet and dry phases. Here the 
wet (dry) phase denotes the phases 3–6 (phases 7, 8, 1 and 
2), in which wet (dry) spell prevails over the tropical WNP. 
During the forecast time of 1–20 days, the strong BSISO 
cases evolving from dry to wet (wet to dry) phases are 
referred to as DW (WD) cases, while those staying persis-
tently in wet or dry phase are referred to as PW or PD cases. 
The numbers of the DW, WD, PW and PD cases involved 
in the following composite analysis are 15, 15, 18 and 18, 
respectively. These four categories of cases account for 90% 
of the total 76 strong BSISO cases selected in Sect. 4. They 
all exhibit long duration of wet or dry anomalies over the 
tropical WNP during the forecast time of 6–20 days when 
the forecast skills are clearly different among the hindcast 
experiments.

The composite BSISO trajectories for the above four cat-
egories of cases during the forecast time of 1–20 days are 
given in Fig. 10. In the observation, the DW (WD) cases 
exhibit enhanced (suppressed) convection propagating from 
equatorial ocean to east of Philippines, corresponding to the 
evolution of BSISO from phase 1 to phase 5 (phase 5 to 
phase 1). The PW cases propagate from phase 3 to phase 6 
with wet spell over the tropical WNP, while the PD cases 
decay in phase 8 and then develop in phases 1–2 with dry 
spell over the tropical WNP. By comparison, the Exp_WSST 
and Exp_DSST better reproduce the evolution of all four 

categories of BSISO cases beyond the forecast time of 5 
days relative to the Exp_MSST, with closer-to-observed 
BSISO amplitude and phase variation. This is consistent 
with the results of prediction skill shown in Figs. 8 and 9.

For the DW cases, Fig. 11 depicts the composite time-
latitude distributions of intraseasonal anomalies of pre-
cipitation, U850, column-integrated MSE and its tendency 
averaged along 110–140 °E. During the forecast time of 
1–20 days, the observation shows a northward propaga-
tion of wet anomalies from equator to subtropical WNP 
and an obvious transition from dry to wet (wet to dry) 
anomalies over the tropical (equatorial) western Pacific. 
The Exp_MSST basically captures the variation feature of 
BSISO convection. However, it underestimates the inten-
sity of enhanced (suppressed) convection over the tropical 
(equatorial) western Pacific beyond the forecast time of 
5 days. Compared with the Exp_MSST, the Exp_WSST 
and Exp_DSST can more reasonably predict the northward 
propagation and intensity of precipitation anomalies over 
the WNP beyond the 5-day forecast time. Correspondingly, 
the predictions of easterly (westerly) wind anomalies pre-
vailing over the areas north (south) to the deep convection 
center are also improved. Despite the differences in the 
location and peak time of the BSISO precipitation and cir-
culation centers, the observed intraseasonal anomalies of 
column-integrated MSE and its tendency show northward 
propagation associated with the evolution of BSISO con-
vection. The variation feature of intraseasonal MSE and 
MSE tendency is also better reproduced in the Exp_WSST 
and Exp_DSST than in the Exp_MSST. These results indi-
cate that adopting higher-frequency SST observation in 
the model initialization process tends to produce a more 

Fig. 9   The forecast skill as a function of the forecast time. The bivari-
ate anomaly correlation (BAC) of BSISO index between observa-
tions and predictions of each hindcast experiment for strong and weak 

cases are shown in (a) and (b), respectively. The dashed lines in (a) 
and (b) represent skill values of 0.5
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skillful forecast of the intraseasonal anomalies of pre-
cipitation, circulation, MSE and MSE tendency that are 
closely related to the BSISO characteristics.

Figure 12 further gives the composite time-latitude dis-
tributions of intraseasonal anomalies of various budget 
terms contributing to the column-integrated MSE ten-
dency averaged along 110–140 °E for the DW cases. The 
terms include horizonal and vertical advection of MSE, net 
longwave and shortwave radiative heating, surface latent 

and sensible heat flux. At the intraseasonal time scale, the 
observed vertical and horizontal MSE advection, longwave 
radiation flux and latent heat flux show strong anomalies 
propagating northward, indicating large contribution 
to the MSE tendency. In contrast, the shortwave radia-
tion flux and sensible heat flux are quite weak, contrib-
uting little to the MSE tendency. Although featured by 
similar biases in the magnitude, location and peak time 
of anomaly center for the above terms, the three sets of 

Fig. 10   Composite trajectories for the strong BSISO cases with a 
dry-to-wet (DW), b wet to dry (WD), c persistent-wet (PW) and d 
persistent-dry (PD) phase variation. The black big dots denote the 

location at the previous day of forecast starting date, and small dots 
represent the location at each day since the forecast starting date
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hindcast  experiments could differ remarkably in some 
budget terms. From the Exp_MSST to the Exp_WSST and 
Exp_DSST, the prediction of latent heat flux is remark-
ably improved in the magnitude and propagation. This 
improvement is also evident for the terms of horizontal 
and vertical MSE advection. Moreover, the prediction 
of longwave radiation is slightly improved, whereas the 
predictions of shortwave radiation flux and sensible heat 
flux are hardly improved. Although the differences among 
the three sets of hindcast experiments are very significant 

in some forecast cases (figure not shown), the composite 
differences of MSE budgets terms between different pre-
dictions are only statistically significant over several small 
areas. This is possibly due to the sharply smoothed BSISO 
evolution features by composite of various cases with dif-
ferent position and intensity of dry/wet anomaly center.

For the DW cases, the composite time variations of intra-
seasonal anomalies of precipitation, MSE, MSE tendency 
and its budget terms regionally averaged over the core region 
(10–20 °N, 110–140 °E) are given in Fig. 13. In this region, 

Fig. 11   Composite time-latitude distributions of the intraseasonal 
anomalies of precipitation, 850-hPa zonal wind, column-integrated 
MSE, and MSE tendency averaged along 110–140 °E in observations 

and predictions of each hindcast  experiment for the strong BSISO 
cases with dry-to-wet (DW) phase variation
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the observed precipitation anomalies turn from negative to 
positive at the beginning of forecast, peaks around the 15th 
forecast day and remains strong subsequently. The MSE 
shows similar variation feature, but its tendency peaks 
around the 6th forecast day and then decays rapidly. This 
indicates that the intraseasonal MSE is highly in phase with 
the BSISO precipitation and intensive moistening appears 
about 1 week ahead of the convection center, consistent with 
the findings of previous studies (e.g., DeMott et al. 2016; 
Gao et al. 2018). Meanwhile, the various observed MSE 
budget terms differ in the magnitude and the occurrence 

time of peaking and transiting between negative and positive 
states. During the 1–5th forecast day when the dry anomalies 
occur, the horizontal and vertical advection act as apparent 
sources to recharge the MSE, whereas the latent heat flux 
and longwave radiation flux serve as apparent sinks to dis-
charge the MSE. This recharge-discharge process is reversed 
when  the BSISO precipitation is persistently enhanced 
during the 6–20th forecast day. The three sets of  hind-
cast experiments can generally capture the variation feature 
of precipitation, MSE and MSE budget terms, but with obvi-
ous biases in the magnitude. By comparison, with less root 

Fig. 12   Same as in Fig.  11, but for the intraseasonal anomalies of 
column-integrated horizontal advection ( −V ⋅ ∇m ), vertical advection 
( −� ⋅ �m∕�p ), net longwave radiation ( LW ), net shortwave radiation 
( SW ), surface latent ( LH ), and surface sensible heat ( SH ). Stippling 

denotes where the differences between the Exp_WSST/Exp_DSST 
predictions and the Exp_MSST predictions are significant at the 90% 
confidence level according to the Student’s t test
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mean square errors against the observations, the Exp_WSST 
and Exp_DSST outperform the Exp_MSST in predicting the 
precipitation, MSE, and MSE tendency especially beyond 
the forecast time of 5 days. For the MSE budget terms, com-
pared with the Exp_MSST, the Exp_MSST and Exp_DSST 
exhibit much closer-to-observed magnitude of latent heat 
flux, as well as somewhat improved horizonal and vertical 
MSE advection during the 6–20-day forecast time. Never-
theless, the three sets of hindcast experiments display rela-
tively small differences of longwave radiation flux, short-
wave radiation flux and sensible heat flux. This indicates 
that the realistic representation of latent heat flux as well as 
horizontal and vertical MSE advection may largely contrib-
ute to the above-mentioned closer-to-observed evolution of 
the DW cases in the Exp_WSST and Exp_DSST than in the 
Exp_MSST.

In addition, for the WD, PW and PD cases, the com-
posite time-latitude cross sections of intraseasonal anom-
alies of precipitation averaged along 110–140  °E are 
shown in Fig. 14a. For the WD cases, the Exp_WSST 
and Exp_DSST can better capture the magnitude of dry 
anomalies over the tropical WNP beyond the 5-day fore-
cast time than the Exp_MSST. For the PW cases, different 
from the observation in which the wet anomalies over the 
WNP maintains within the forecast time of 20 days, the 
Exp_MSST shows wet anomalies over the tropical WNP 
before the forecast time of about 15 days, but exhibit an 
erroneous transition from wet to dry anomalies beyond 
that time. The deficiency of the unrealistic transition is 
reduced in the Exp_WSST and Exp_DSST. For the PD 
cases, the magnitude and variation of dry anomaly over the 
WNP during the forecast time of 6–20 days are also some-
what improved from the Exp_MSST to the Exp_WSST 

Fig. 13   Composite time variations of intraseasonal anomalies of sev-
eral variables for the strong BSISO cases with dry-to-wet (DW) phase 
variation. a Precipitation, and column-integrated b MSE, c MSE 
tendency, d horizontal advection ( −V ⋅ ∇m ), e vertical advection 
( −� ⋅ �m∕�p ), f net longwave radiation ( LW ), g net shortwave radi-

ation ( SW ), h surface latent ( LH ), and i surface sensible heat ( SH ) 
regionally averaged over the area (10–20 °N, 110−140 °E). The deci-
mals shown beside the legends are root mean square errors between 
the observations and predictions of each hindcast experiment during 
the forecast time of 1–20 day
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and Exp_DSST. These results suggest that using rela-
tively higher-frequency SST observations for the model 
initialization could result in improved prediction of the 
magnitude and propagation of BSISO convection over the 

tropical WNP whenever the BSISO is persistently active/
break or evolves between wet and dry phases over that 
region.

From the Exp_MSST to the Exp_WSST and Exp_
DSST, the intraseasonal MSE tendency and most budget 

Fig. 14   Same as in Fig. 11, but for the intraseasonal anomalies of a precipitation and b surface latent heat flux for the strong BSISO cases with 
wet-to-dry (WD), persistent-wet (PW) and persistent-dry (PD) phase variation
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terms averaged along 110–140 °E are overall more skill-
fully predicted during the forecast time of 6–20 days 
for the WD, PW, and PD cases (figure not shown). The 
improvement is especially evident in the prediction of 
latent heat flux that related to the BSISO convection 
(Fig. 14b). This is similar to the results of DW cases in 
Figs. 12 and 13, further confirming that the improved 
forecast of BSISO characteristics is associated with the 
more realistic description of latent heat flux. This stresses 
the key role of the intraseasonal latent heat flux on the 
development of BSISO convection over the WNP, possi-
bly through triggering instability of atmospheric boundary 
layer prior to the convection center as demonstrated by 
Wang et al. (2018).

Furthermore, aiming at the forecast time of 6–20 days 
when the differences of BSISO prediction among the three 
hindcast experiments are notable, Fig. 15 gives the tempo-
ral mean intraseasonal MSE tendency and its budget terms 
averaged over the region (10–20 °N, 110–140 °E) for various 
cases. During the forecast time of 6–20 days, for the DW 
and PW (WD and PD) cases, the observed MSE tendency 
is largely compensated (offset) by the latent heat flux and 
longwave radiation flux and offset (compensated) by the hor-
izontal and vertical advection of MSE, but is little attributed 
to the shortwave radiation flux and sensible heat flux. The 
Exp_MSST considerably underestimates the amplitude of 
the four dominant MSE budget terms (i.e., horizontal advec-
tion, vertical advection, latent heat flux, and longwave radia-
tion flux). The Exp_WSST and Exp_DSST can reduce the 
biases, especially in the latent heat flux, consistent with pre-
vious results in Figs. 12, 13 and 14. The latent heat flux is 
underestimated by about 5 Wm− 2, 6 Wm− 2, 12 Wm− 2, and 
5 Wm− 2 in the Exp_MSST for the DW, WD, PW and PD 
cases, respectively. It is further improved in the Exp_WSST 
and Exp_DSST, with reduction of biases by more than 87 %, 
51 %, 21 %, and 66 % for the above four different types of 
BSISO cases, respectively. Also, from the Exp_MSST to 
the Exp_WSST and Exp_DSST, the biases of vertical MSE 
advection are reduced by about 14–30% for the DW and PD 
cases, and those of horizontal MSE advection are decreased 
by about 10–41% for all four categories of cases. In addition, 
the longwave radiation is slightly improved for most cases.

The above results suggest that the inclusion of higher-
frequency observed SST in the model initialization can lead 
to improvement in the BSISO-related MSE variations, pos-
sibly by changing the surface evaporation (related to the 
surface latent heat flux) and atmospheric convergence and 
divergence (related to the MSE advection). This improve-
ment may further result in more skillful forecast of BSISO 
over the WNP.

6 � Summary and discussion

Based on the prediction of three sets of hindcast experiments 
with BCC-CSM2 initialized by SST observations of differ-
ent temporal frequencies, this study examines the impact of 

Fig. 15   Composite temporal mean intraseasonal anomalies of col-
umn-integrated MSE tendency and various MSE budget terms (unit: 
Wm− 2) averaged over the region (10–20 °N, 110−140 °E) during the 
forecast time of 6–20 days. The MSE budget terms include horizontal 
advection ( −V ⋅ ∇m ), vertical advection ( −� ⋅ �m∕�p ), net longwave 
radiation ( LW ), net shortwave radiation ( SW ), surface latent ( LH ), 
and surface sensible heat ( SH ). The results are for the strong BSISO 
cases with a dry-to-wet (DW), b wet-to-dry (WD), c persistent-wet 
(PW), and d persistent-dry (PD) phase variation
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observed SST frequency in the model initialization on the 
prediction of BSISO over the WNP.

A 15-year free run simulation shows that the model itself 
can reasonably reproduce the spatial structure of the BSISO 
variability and BSISO mode, the northward propagation of 
intraseasonal anomalies of precipitation, circulation and SST 
over the WNP, as well as the convection-circulation phase 
relationship. However, it still shows clear biases in simulat-
ing the amplitude and location of BSISO activity center. 
These deficiencies may limit the forecast skill of BSISO over 
the WNP to some extent.

The useful prediction skill of real-time BSISO indices 
is up to 10 days in the Exp_MSST, and further increases to 
11–12 days in the Exp_WSST and Exp_DSST. Among the 
three sets of hindcast experiments, the BSISO prediction 
skills are very similar within the first few days of forecast 
but exhibit clear differences beyond the forecast time of 5 
days, indicating that the impacts of SST initial conditions 
gradually become more noticeable as the forecast time 
increases. Compared to the Exp_MSST, the Exp_WSST 
and Exp_DSST slightly enhance the overall prediction 
skill during the forecast time of 6–20 days, in terms of the 
BAC and RMSE of BSISO indices and the PCCs of intra-
seasonal precipitation and U850 anomalies over the WNP. 
This suggests that adopting higher-frequency SST observa-
tions in the model initialization process tends to improve the 
prediction of BSISO feature over the WNP. The BSISO skill 
differences among the three sets of hindcast experiments are 
dependent on the amplitude of BSISO. From the Exp_MSST 
to the Exp_WSST and Exp_DSST, the prediction skill is 
clearly enhanced for the strong BSISO cases, but it is almost 
unchanged for the weak BSISO cases. About 90% of the 
strong BSISO cases are characterized by long duration of 
dry or wet anomaly over the tropical WNP during the fore-
cast day of 6–20 days. For these cases, the Exp_WSST and 
Exp_DSST can more skillfully capture the BSISO magni-
tude and phase variation than the Exp_MSST.

Further composite analysis on the strong BSISO cases 
indicates that the three sets of hindcast experiments show 
remarkable differences in the predicted BSISO-related MSE 
and MSE tendency during the forecast time of 6–20 days 
when the differences of BSISO prediction skill among the 
three hindcast experiments are evident. Diagnostic of MSE 
budget indicates that the Exp_WSST and Exp_DSST can 
generally better reproduce the amplitude and propagation of 
intraseasonal MSE, MSE tendency and most of its budget 
terms than the Exp_MSST. Especially, from the Exp_MSST 
to the Exp_WSST and Exp_DSST, for various BSISO cases 
during the forecast time of 6–20 days, the mean biases of 
latent heat flux and MSE advection over the WNP are 
reduced by about 21–87% and 10–41%, respectively. This 
suggests that using higher-frequency SST observations for 
the model initialization can lead to more realistic prediction 

of BSISO-related MSE variations, and thus enhance the 
BSISO prediction skill possibly through changing the sur-
face evaporation (related to the latent heat flux) and atmos-
pheric convergence and divergence (related to the MSE 
advection).

This study demonstrates that the forecast experiments 
with daily or weekly SST observations used in the model 
initialization process can enhance the BSISO prediction 
skill during the forecast time of 6–20 days compared to 
those with monthly SST observations. However, this skill 
enhancement in this study is less significant than that in Kim 
et al. (2008) and Boisséson et al. (2012), probably because of 
the different model settings. In contrast to atmosphere-only 
model with prescribed SST field used in previous studies, 
the coupled climate system model used in this study may 
suffer from a deteriorating SST forecast with increasing 
forecast time, partly because of the model drift in ocean-
atmosphere coupling process. This may to some extent limit 
the forecast skill at long forecast time. In addition, although 
we suppose it is necessary to increase the frequency of SST 
observations in the model initialization process, the highest-
frequency SST observation in this study is not optimal for 
the BSISO prediction. This implies the huge uncertainty of 
S2S prediction, which is largely affected by the errors in 
both initial conditions and model itself. It is of course that 
the above results are perhaps somewhat uncertain because of 
the model-dependent forecast errors, the difference in SST 
observations, and the limited number of hindcast cases, as 
well as the considerable residuals of MSE budget shown 
in this study and many other studies (e.g., Kiranmayi and 
Maloney 2011; Sobel et al. 2014). To improve the S2S pre-
diction of the BCC model as well as other models, more 
efforts should be made to optimize the model initial condi-
tions, in addition to a sustained endeavor to upgrade the 
model physical parameterizations.

Acknowledgements  This study was jointly supported by the National 
Key R&D Program of China under Grant 2016YFA0602100, the 
National Natural Science Foundation of China under Grant 42075161, 
41975081, 41675090, and 41875004, the Postgraduate Research and 
Practice Innovation Program of Jiangsu Province of China under Grant 
KYCX190038, the bilateral research project GZ1259 of the Sino-
German Center for Research Support, CAS “Light of West China” 
Program, the Jiangsu University “Blue Project” outstanding young 
teachers training object, and the Fundamental Research Funds for the 
Central Universities and the Jiangsu Collaborative Innovation Center 
for Climate Change. We appreciate the four anonymous reviewers for 
their constructive and insightful suggestions to improve the manuscript 
greatly.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 



1116	 X. Zhu et al.

1 3

otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Abhilash S, Sahai AK, Borah N et al (2014) Does bias correction in 
the forecasted SST improve the extended range prediction skill of 
active-break spells of Indian summer monsoon rainfall? Atmos 
Sci Lett 15:114–119

Adler RF, Huffman GJ, Chang A et al (2003) The version-2 global 
precipitation climatology project (GPCP) monthly precipitation 
analysis (1979–present). J Hydrometeorol 4:1147–1167

Bo Z, Liu X, Gu W, Huang A et al (2020) Impacts of atmospheric 
and oceanic initial conditions on boreal summer intraseasonal 
oscillation forecast in the BCC model. Theor Appl Climatol 
142(1):393–406

Boisséson Ed, Balmaseda M, Vitart F, Mogensen K (2012) Impact 
of the sea surface temperature forcing on hindcasts of Madden-
Julian Oscillation events using the ECMWF model. Ocean Sci 
8:1071–1084

DeMott CA, Benedict JJ, Klingaman N et al (2016) Diagnosing ocean 
feedbacks to the MJO: SST-modulated surface fluxes and the 
moist static energy budget. J Geophys Res Atmos 121:8350–8373

Ding Q, Wang B (2005) Circumglobal teleconnection in the Northern 
Hemisphere summer. J Clim 18:3483–3505

Ding R, Li J, Seo KH (2011) Estimate of the predictability of boreal 
summer and winter intraseasonal oscillations from observations. 
Mon Weather Rev 139:2421–2438

Fang Y, Wu P, Wu T et al (2016) An evaluation of boreal summer 
intra-seasonal oscillation simulated by BCC_AGCM2.2. Clim 
Dyn 48:3409–3423

Fang Y, Li B, Liu X (2019) Predictability and prediction skill of the 
boreal summer intra-seasonal oscillation in BCC_CSM model. J 
Meteorol Soc Jpn 97:295–311

Fu X, Wang B (2004) The boreal-summer intraseasonal oscillation 
simulated in a hybrid coupled atmosphere-ocean model. Mon 
Weather Rev 132:2628–2649

Fu X, Wang B, Li T, McCreary JP (2003) Coupling between north-
ward-propagating, intraseasonal oscillations and sea surface tem-
perature in the Indian Ocean. J Atmos Sci 60:1733–1753

Fu X, Yang B, Bao Q, Wang B (2008) Sea surface temperature feed-
back extends the predictability of tropical intraseasonal oscilla-
tion. Mon Weather Rev 136:577–597

Fu X, Lee JY, Hsu PC et al (2013) Multi-model MJO forecasting during 
DYNAMO/CINDY period. Clim Dyn 41:1067–1081

Gao Y, Klingaman NP, DeMott CA, Hsu PC (2019) diagnosing ocean 
feedbacks to the BSISO: SST-modulated surface fluxes and the 
moist static energy budget. J Geophys Res Atmos 124:146–170

Griffies S, Gnanadesikan A, Dixon KW et al (2005) Formulation of an 
ocean model for global climate simulations. Ocean Sci 1:45–79

Hersbach H, Bell B, Berrisford P et al (2020) The ERA5 global rea-
nalysis. Q J R Meteorol Soc 146:1999–2049

Hsu PC, Lee JY, Ha KJ (2016) Influence of boreal summer intrasea-
sonal oscillation on rainfall extremes in southern China. Int J Cli-
matol 36:1403–1412

Hsu PC, Lee JY, Ha KJ, Tsou CH (2017) Influences of boreal summer 
intraseasonal oscillation on heat waves in monsoon Asia. J Clim 
30:7191–7211

Hu W, Duan A, He B (2017) Evaluation of intra-seasonal oscillation 
simulations in IPCC AR5 coupled GCMs associated with the 
Asian summer monsoon. Int J Climatol 37:476–496

Huang A, Zhang Y, Wang Z et al (2013) Extended range simula-
tions of the extreme snow storms over southern China in early 
2008 with the BCC_AGCM2.1 model. J Geophys Res Atmos 
118:8253–8273

Jie W, Vitart F, Wu T, Liu X (2017) Simulations of the Asian sum-
mer monsoon in the sub-seasonal to seasonal prediction project 
(S2S) database. Q J R Meteorol Soc 143:2282–2295

Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 
40-year reanalysis project. Bull Am Meteorol Soc 77:437–472

Kim HM, Hoyos CD, Webster PJ, Kang IS (2008) Sensitivity of 
MJO simulation and predictability to sea surface temperature 
variability. J Clim 21:5304–5317

Kiranmayi L, Maloney ED (2011) Intraseasonal moist static energy 
budget in reanalysis data. J Geophys Res Atmos 116:D21117

Klingaman NP, Inness PM, Weller H, Slingo JM (2008) The impor-
tance of high-frequency sea surface temperature variability to 
the intraseasonal oscillation of Indian monsoon rainfall. J Clim 
21:6119–6140

Klingaman NP, Jiang X, Xavier PK, Petch J, Waliser D, Woolnough 
SJ (2015) Vertical structure and physical processes of the Mad-
den-Julian oscillation: synthesis and summary. J Geophys Res 
Atmos 120:4671–4689

Lau KM, Chan PH (1986) Aspects of the 40–50-day oscillation dur-
ing the northern summer as inferred from outgoing longwave 
radiation. Mon Weather Rev 114:1354–1367

Lee JY, Wang B, Wheeler MC, Fu X, Waliser DE, Kang IS (2013) 
Real-time multivariate indices for the boreal summer intrasea-
sonal oscillation over the Asian summer monsoon region. Clim 
Dyn 40:493–509

Lee SS, Wang B, Waliser DE, Neena JM, Lee JY (2015) Predict-
ability and prediction skill of the boreal summer intraseasonal 
oscillation in the Intraseasonal Variability Hindcast Experiment. 
Clim Dyn 45:2123–2135

Li W, Zhang Y, Shi X, Zhou W, Huang A, Mu M, Qiu B, Ji J (2019) 
Development of land surface model BCC_AVIM2.0 and its 
preliminary performance in LS3MIP/CMIP6. J Meteorol Res 
33(5):851–869

Liebmann B, Smith CA (1996) Description of a complete (interpo-
lated) outgoing longwave radiation dataset. Bull Am Meteorol 
Soc 77:1275–1277

Liebmann B, Hendon HH, Glick JD (1994) The relationship between 
tropical cyclones of the western Pacific and Indian Oceans and 
Madden-Julian oscillation. J Meteorol Soc Jpn 72:401–412

Lin H (2012) Monitoring and predicting the intraseasonal variabil-
ity of the East Asian–Western North Pacific summer monsoon. 
Mon Weather Rev 141:1124–1138

Lin H (2019) Long-lead ENSO control of the boreal summer intra-
seasonal oscillation in the East Asian-western North Pacific 
region. NPJ Clim Atmos Sci 2(1):1–6

Lin H, Brunet G, Derome J (2008) Forecast skill of the Madden–
Julian oscillation in two Canadian atmospheric models. Mon 
Weather Rev 136:4130–4149

Liu X, Wu T, Yang S et al (2014) Relationships between interannual 
and intraseasonal variations of the Asian-western Pacific sum-
mer monsoon hindcasted by BCC_CSM1. 1 (m). Adv Atmos 
Sci 31:1051–1064

Liu X, Wu T, Yang S et al (2015) Performance of the seasonal fore-
casting of the Asian summer monsoon by BCC_CSM1. 1(m). 
Adv Atmos Sci 32:1156–1172

Liu X, Wu T, Yang S et al (2017) MJO prediction using the sub-
seasonal to seasonal forecast model of Beijing Climate Center. 
Clim Dyn 48:3283–3307

Liu X, Li W, Wu T et al (2019) Validity of parameter optimization 
in improving MJO simulation and prediction using the sub-
seasonal to seasonal forecast model of Beijing Climate Center. 
Clim Dyn 52:3823–3843

http://creativecommons.org/licenses/by/4.0/


1117Impact of the observed SST frequency in the model initialization on the BSISO prediction﻿	

1 3

Maloney ED (2009) The moist static energy budget of a composite 
tropical intraseasonal oscillation in a climate model. J Clim 
22:711–729

Mao J, Sun Z, Wu G (2010) 20–50-day oscillation of summer Yangtze 
rainfall in response to intraseasonal variations in the subtropical 
high over the western North Pacific and South China Sea. Clim 
Dyn 34:747–761

Neelin JD, Held IM (1987) Modeling tropical convergence based on the 
moist static energy budget. Mon Weather Rev 115:3–12

Neena JM, Waliser D, Jiang X (2017) Model performance metrics and 
process diagnostics for boreal summer intraseasonal variability. 
Clim Dyn 48:1661–1683

Pegion K, Kirtman BP (2008) The impact of air–sea interactions 
on the simulation of tropical intraseasonal variability. J Clim 
21:6616–6635

Rashid HA, Hendon HH, Wheeler MC, Alves O (2011) Prediction 
of the Madden–Julian oscillation with the POAMA dynamical 
prediction system. Clim Dyn 36:649–661

Ren X, Yang XQ, Sun X (2013) Zonal oscillation of western pacific 
subtropical high and subseasonal SST variations during Yangtze 
persistent heavy rainfall events. J Clim 26:8929–8946

Reynolds RW, Smith TM, Liu C et  al (2007) Daily high-resolu-
tion-blended analyses for sea surface temperature. J Clim 
20:5473–5496

Sabeerali C, Ramu Dandi A, Dhakate A et al (2013) Simulation of 
boreal summer intraseasonal oscillations in the latest CMIP5 cou-
pled GCMs. J Geophys Res Atmos 118:4401–4420

Seo H, Subramanian AC, Miller AJ, Cavanaugh NR (2014) Coupled 
impacts of the diurnal cycle of sea surface temperature on the 
Madden-Julian oscillation. J Clim 27:8422–8443

Sobel A, Maloney E, Bellon G, Frierson D (2008) The role of surface 
fluxes in tropical intraseasonal oscillations. Nat Geosci 1:653–657

Sobel A, Wang S, Kim D (2014) Moist static energy budget of the MJO 
during DYNAMO. J Atmos Sci 71:4276–4291

Stan C (2018) The role of SST variability in the simulation of the MJO. 
Clim Dyn 51:2943–2964

Van den Dool H, Saha S (1990) Frequency dependence in forecast skill. 
Mon Weather Rev 118:128–137

Vitart F (2017) Madden-Julian oscillation prediction and teleconnec-
tions in the S2S database. Q J R Meteorol Soc 143:2210–2220

Vitart F, Robertson AW, Anderson DL (2012) Subseasonal to seasonal 
prediction project: Bridging the gap between weather and climate. 
WMO Bull 61:23–28

Waliser D, Stern W, Schubert S, Lau K (2003) Dynamic predictabil-
ity of intraseasonal variability associated with the Asian summer 
monsoon. Q J R Meteorol Soc 129:2897–2925

Wang W, Chen M, Kumar A (2009) Impacts of ocean surface on the 
northward propagation of the boreal summer intraseasonal oscil-
lation in the NCEP climate forecast system. J Clim 22:6561–6576

Wang W, Kumar A, Fu X, Hung MP (2015) What is the role of the 
sea surface temperature uncertainty in the prediction of tropi-
cal convection associated with the MJO? Mon Weather Rev 
143:3156–3175

Wang T, Yang X, Fang J, Sun X, Ren X (2018) Role of air-sea interac-
tion in the 30–60-day boreal summer intraseasonal oscillation over 
the western north Pacific. J Clim 31:1653–1680

Weng CH, Hsu HH (2017) Intraseasonal oscillation enhancing C5 
typhoon occurrence over the tropical western North Pacific. Geo-
phys Res Lett 44:3339–3345

Winton M (2000) A reformulated three-layer sea ice model. J Atmos 
Oceanic Technol 17:525–531

Wu T, Song L, Li W et al (2014) An overview of BCC climate system 
model development and application for climate change studies. J 
Meteorol Res 28:34–56

Wu T, Lu Y, Fang Y et al (2019) The Beijing Climate Center Climate 
System Model (BCC-CSM): The main progress from CMIP5 to 
CMIP6. Geosci Model Dev 12:1573–1600

Xiang B, Zhao M, Jiang X et al (2015) The 3–4-week MJO prediction 
skill in a GFDL coupled model. J Clim 28:5351–5364

Yasunari T (1979) Cloudiness fluctuations associated with the northern 
hemisphere summer monsoon. J Meteorol Soc Jpn 57:227–242

Yasunari T (1980) A quasi-stationary appearance of 30 to 40-day 
period in the cloudiness fluctuations during the summer monsoon 
over India. J Meteorol Soc Jpn 58:225–229

Zhang Y, Hung MP, Wang W, Kumar A (2019) Role of SST feedback 
in the prediction of the boreal summer monsoon intraseasonal 
oscillation. Clim Dyn 53:3861–3875

Zhu B, Wang B (1993) The 30–60-day convection seesaw between 
the tropical Indian and western Pacific Oceans. J Atmos Sci 
50:184–199

Publisher’s note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Impact of the observed SST frequency in the model initialization on the BSISO prediction
	Abstract
	1 Introduction
	2 Model, data, experimental design, and methods
	2.1 Model
	2.2 Data
	2.3 Experimental design
	2.4 Methods

	3 Evaluation of BSISO characteristics in the free run
	4 Forecast skill of BSISO
	5 Possible mechanisms
	6 Summary and discussion
	Acknowledgements 
	References




