
1.  Introduction
As “the world water tower” (Xu et al., 2008), Tibetan Plateau (TP) is dotted with more than 1400 inland lakes 
with an area of over 1 km 2 (Zhang et al., 2019), most of which are salt lakes (Liu et al., 2021). The total lake 
area on the TP exceeds 50,000 km 2 in 2018, which accounts for around 57% of the total lake area in China (Tao 
et al., 2020). The unstable boundary layer of TP lakes (Wang, Ma, et al., 2015; Wen et al., 2016) causes huge 
amounts of water and heat transported into the middle atmosphere (Lazhu et al., 2016; Wang, Ma, et al., 2020), 
which directly affects the local weather and climate in the TP (Wen et al., 2015; Wu, Huang, et al., 2019). In 
turn, lakes on the TP are also sensitive to climate change because of the distinct alpine climate (Yang et al., 2014; 
Zhang et al., 2020). Due to the sparse population of TP, the changes in TP lakes are more reflective of natural 
climate change than the lakes affected directly by human behavior (Pekel et al., 2016; Yang et al., 2020; Zhang 
et al., 2017).

The direct response of a lake to climate warming is the rising lake surface water temperature (LSWT), which 
would further influence aquatic systems in various aspects (Adrian et al., 2009; Shimoda et al., 2011; Woolway 
et al., 2021). Rising LSWT could enhance and prolong thermal stratification (Anderson et al., 2021; Kraemer 
et al., 2015) and reduce the ice duration in seasonally ice-covered lakes (Kropáček et al., 2013; Sharma  et al., 2019), 
thereby enhancing surface evaporation (Lazhu et  al.,  2016) and altering lake mixing regimes (Woolway & 
Merchant, 2019). Additionally, warming of lakes also causes lake ecosystems degradation (Cohen et al., 2016; 
Snortheim et al., 2017) and promotes greenhouse gas emissions in lakes (Mu et al., 2016; Tranvik et al., 2009; 
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F. Yan et al., 2018). Thus, it is necessary to understand how the lake temperatures respond to climate change for 
better prediction and reasonable socioeconomic countermeasures.

Global satellite and in situ comprehensive analyses about LSWT demonstrate that lakes have been warming world-
wide in summer (O’Reilly et al., 2015; Schneider & Hook, 2010), with a mean increasing rate of 0.34°C per decade 
from 1985 to 2009. The most evident rises of LSWT appear in middle- and high-latitude of the northern hemi-
sphere, even exceeding local surface air temperatures, such as the Great Lakes (Austin & Colman, 2007; Huang 
et al., 2012; Schneider & Hook, 2010) and Nordic Lakes (Livingstone & Padisák, 2007; Niedrist et al., 2018). 
The increase of LSWT is mainly attributed to surface air warming (Piccolroaz et al., 2013; Schmid et al., 2014; 
Schneider & Hook, 2010) and further to anthropogenic climate change (Grant et al., 2021). Other meteorological 
factors were emphasized recently, such as increased radiation (Fink et al., 2014; Schmid & Köster, 2016) and 
reduced wind speed (Huang et al., 2012; Woolway et al., 2019). Meanwhile, changes in LSWT are of heteroge-
neity globally (O’Reilly et al., 2015) but coherence regionally (Livingstone & Padisák, 2007), which reflect the 
role of background climate, thermal conditions of lakes, local geographic and geomorphic features including lake 
elevation (Livingstone et al., 2005), morphology (Kraemer et al., 2015; Magee & Wu, 2017), depth (Kraemer 
et al., 2015), and water clarity (Rose et al., 2016; Subin et al., 2012). For instance, lakes covered with ice typically 
warm faster than ambient air temperatures, and lake morphology influences the strength of this response (Austin 
& Colman, 2007; Butcher et al., 2015).

Relative to other regions, the thermal response of TP lakes to climate change is of distinctive research impor-
tance, because of the unique geological environment (e.g., high elevation, lots of salt and glacier-fed lakes; Zhang 
et al., 2020), alpine climate (e.g., low air temperature but high solar radiation) and climate change characteristics 
(e.g., higher warming rate than the global mean; Duan & Xiao, 2015; Kuang & Jiao, 2016). It is due to these 
features that TP lakes are often excluded from some analyses about LSWT on a global scale (Layden et al., 2015; 
Schmid et al., 2014; Woolway & Merchant, 2017).

Owing to the field observations limited by the remoteness and wilderness, many studies on TP lakes rely more on 
satellites. Zhang et al. (2014) first retrieved the night land surface temperature (LST) from Moderate Resolution 
Imaging Spectroradiometer (MODIS/Terra) during 2001–2012 to study the LSWT of 52 lakes with an area of 
more than 50 km 2 on TP, 31 lakes (60%) of which showed an increasing temperature trend. Yet another similar 
survey from 2001 to 2015 showed that only 18 (32%) of the lakes warmed in the daytime and 27 (48%) at night-
time (Song et al., 2016). If the perspective was widened to 374 lakes (≥10 km 2 each), the majority of lakes (70%) 
showed warming (Wan et al., 2018). It implies that there are large uncertainties in LSWT trends within the time 
span of the satellite data at present, such as MODIS since 2000 to present, Landsat-7 since 1999, the Advanced 
Along Track Scanning Radiometer (ATSR/AATSR) series since 1995, and Advanced Very High Resolution 
Radiometer (NOAA-AVHRR) since 1981 (Tomlinson et al., 2011).

Besides, there are shortcomings of lower sampling density in earlier years (e.g., AVHRR and AATSR) and 
sampling discontinuities due to cloud pollution especially local frequent convection in TP (Lazhu et al., 2016; 
Rao et al., 2019; Wu, Huang, et al., 2019), which pose problems for studying the interannual variability and 
long-term trends when using statistic methods. These shortcomings could be compensated by numerical models 
with solid physical processes, and more importantly, numerical experiments could be designed to decompose the 
contributions of different atmospheric forcings on the lake system.

1-D numerical simulation of lakes has been widely used to study long-term changes in lakes (Anyah & 
Semazzi, 2004; Magee et al., 2016; Perroud et al., 2009; Woolway & Merchant, 2019). In recent years, LSWT 
trends over 30 years have been successfully obtained in several large lakes on TP. Huang et  al.  (2017) indi-
cated that the lake surface warming in Lake Nam Co during 1979–2012 was dominated by the increased surface 
air  temperature and enhanced downward longwave radiation. Besides these two factors, Su et al. (2019) found 
that the weakened surface wind speed also contributes to the warming in Qinghai Lake. While the decrease of 
solar radiation may offset the warming effect of surface air temperature, such as in Lake Ngoring and Lake Gyar-
ing (Kirillin et al., 2017). In the context of similar climate change, however, these lakes show different impact 
factors affecting the lake temperature. Hence it is necessary to comprehensively examine the contributions of 
different atmospheric factors to the LSWT variation over TP lakes.

In this study, we focus on Lake Nam Co (LNC), the third largest lake in the TP, using a 1-D lake model WRF-Lake 
(Huang et al., 2019; Xu et al., 2016) to investigate: the interdecadal variation and long-term trend of LSWT in 
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LNC over the last 40 years (1979–2018); the relative contributions of differ-
ent atmospheric factors to the long-term trend of LSWT. This study can 
improve our understanding of the impact of climate changes on the thermal 
conditions of lakes in alpine regions and provide a reference for prediction 
and countermeasures of future changes in TP lakes.

2.  Material and Methods
2.1.  Study Area

LNC, the highest large lake in China (4,718 m a.s.l) with a surface area over 
2,000  km 2 (Lazhu et  al.,  2016), is situated in the Central Tibetan Plateau 
(30°30′–30°55′N, 90°16′–91°03′E), and north to the Nyainqentanglha 
Mountains (Figure 1a). The maximum and mean depth of LNC exceed 90 
and 50 m (Figure 1b). It is an endorheic and therefore a brackish lake with a 
salinity of around 1.7 g L −1 (Wang et al., 2006), which affects the tempera-
ture at the maximum density (Tdmax) and freezing point of lake water (Lazhu 
et al., 2021).

The Nam Co basin is influenced by the alpine climate. According to the 
weather station observations on the southeastern shore of LNC during 
2006–2018 (Figure  1b; Wang & Wu,  2018,  2019), the multi-year annual 
mean surface air temperature, pressure, solar radiation are −0.4°C, 571.2 hPa, 
245.0 W m −2, respectively. The multi-year annual mean 10 m wind speed in 
the region is 3.4 m s −1, with the highest of 4.5 m s −1 in January due to the 
westerly system (Wang, Ma, et al., 2020). The multi-year annual mean rela-
tive humidity is 57.1% with a peak of 68.6% in August. The mean annual 
precipitation is around 380.0 mm, most of which is concentrated between 

May and October controlled by the southwestern monsoon, and it is an important source of recharge for LNC 
(Zhu et al., 2010).

2.2.  Datasets and Processing

2.2.1.  Meteorological Data and Corrections

The China Meteorological Forcing Data set (CMFD) (Yang & He, 2019) during 1979–2018 was used to drive the 
WRF-Lake model. It has been proven of better reliability for TP lakes compared to other reanalysis datasets, such 
as ERA-Interim and NCEP/NCAR (Du et al., 2019). The CMFD has a temporal resolution of 3 hrs and a spatial 
resolution of 0.1°. It includes seven meteorological elements: surface air temperature (SAT) at 2 m above ground, 
surface pressure (SP), and surface specific humidity (SSH), 10 m wind speed (WS), downward shortwave radi-
ation (SW↓), downward longwave radiation (LW↓) at the surface, and precipitation rate (PR). More information 
can be found in the paper of He et al. (2020) and available at https://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-
8769-965612652c49/. All variables were interpolated into the lake model grids with a resolution of 0.05° by the 
bilinear interpolation method (Peng et al., 2019).

In this study, we found an unusually positive anomaly (relative to climatic state) of LSWT during 1993–2003 
but it was normal in the following years (not shown). This time-varying error should be dependent on the forcing 
data rather than the model. It could be further attributed to the anomalies of WS and SSH during this period. To 
correct the long-term variation of each atmospheric forcing, we replaced the daily CMFD data with the arithmetic 
average of five China Meteorological Administration (CMA) stations around LNC (Figure 1a; Wu & Zhu, 2008) 
without SW↓ and LW↓. For the consistency of data quality over time, the above replacement was taken for all 
years (1979–2018).

Figure 1.  Topography around Lake Nam Co (LNC) and the locations of 
China Meteorological Administration (CMA) stations (a). Bathymetry of LNC 
and the locations of the weather station and water temperature monitoring site; 
the dashed grids indicate the model grids (b).

https://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-965612652c49/
https://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-965612652c49/
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Due to the large difference in elevation among these five CMA stations, thermodynamic variables must be cali-
brated to the elevation (ZN = 4,730 m) of Nam Co station. The surface air temperature (T, units: K) and pressure 
(P, units: hPa) at an elevation of Z (m) were calibrated using the following formulas (Hafner & Smith, 1985):

𝑃𝑃 ′ = 𝑃𝑃

(

𝑇𝑇

𝑇𝑇 + 𝛾𝛾 ⋅ (𝑍𝑍𝑁𝑁 −𝑍𝑍)

)

𝑔𝑔

𝑅𝑅 𝑅𝑅� (1)

𝑇𝑇 ′ = 𝑇𝑇 − 𝛾𝛾 ⋅ (𝑍𝑍𝑁𝑁 −𝑍𝑍)� (2)

where g = 9.81 m s −2, γ = 0.007 K m −1, and R = 287 J K −1 kg −1. T’ and P’ are calibrated temperature and pres-
sure, which were further used to calculate the surface specific humidity (SSH, kg kg −1) by an empirical formula 
(Bolton, 1980; Murray, 1967):

SSH = RH × 0.622 × ��
� ′ =

RH × 0.622
� ′ ×

⎧

⎪

⎪

⎨

⎪

⎪

⎩

6.1078 exp
[

17.27 (� ′ − 273.16)
� ′ − 35.86

]

, � ′ ≥ 0

6.112 exp
[

17.67 (� ′ − 273.16)
� ′ − 29.66

]

, � ′ < 0�
(3)

where RH is the relative humidity (%), es is the saturation vapor pressure (hPa). The corrected data above are 
noted as C-CMFD.

Nevertheless, these distant land sites from LNC are hardly a true reflection of the physical information over the lake 
area, so we further adjusted the C-CMFD derived above using the daily data from the weather station on the south-
eastern shore of LNC during 2006–2018 (Wang & Wu, 2018, 2019). The SAT, RH, SP, WS, and SW↓ were used in 
this data set; LW↓ during 2005–2016 was accessible from Ma (2020), a data set of hourly land-atmosphere  interac-
tion in situ observations (Ma et al., 2020); SSH over the water surface was calculated by Equation 3.

Following Lazhu et  al.  (2016) and Huang et  al.  (2017), we established the linear relationship between the 
C-CMFD and data from the Nam Co station for adjustment, where only the data points above the fifth percentile 
(twentieth for LW↓) of the Gaussian kernel density were used to calculate. As shown in Figure 2, except for the 
WS and LW↓, the variables of C-CMFD show a good consistency with the field observation at Nam Co station 
with a small mean bias and root mean square error (RMSE). The linear adjustment based on regression equations 
in Figure 2 resulted in a significant reduction in mean bias but little reduction in RMSE.

Finally, there was still an underestimation of the WS over the lake using data measured on the lakeshore. We 
multiplied by a constant scaling factor of 1.29 for WS (Schmid & Köster, 2016). The scaling factor was roughly 
calculated from the wind observation by B. Wang et al. (2019), with 3.65 m s −1 in the small lake next to LNC and 
4.71 m s −1 in LNC from July to November in 2015 and 2016.

Above correction and adjustment were not performed for precipitation, since the precipitation rate in CMFD has 
merged satellite data like the Tropical Rainfall Measuring Mission (TRMM) data set and was considered more 
reliable over lake relative to the data from land sites (He et al., 2020; Wu, Guo, et al., 2019).

2.2.2.  Lake Data and Satellite Data

The bathymetry of LNC (Wang et al., 2009) was adopted in the WRF-Lake model (Figure 1b). To validate the 
simulation results, we used the daily lake water temperature profile data at the depths of 3, 6, 16, 21, 26, 31, and 
36 m (Wang, 2020). It was recorded by the monitoring site in the southeast of LNC (30°45.74′N, 90°46.83′E; 
Figure 1b; J. Wang et al., 2019, 2020) from 1 January 2012 to 31 December 2013.

To evaluate the water temperatures on the lake surface, we used Land Surface Temperature (LST) products 
MOD11A1 (Wan et al., 2015a) and MOD11A2 (Wan et al., 2015b) from Moderate Resolution Imaging Spect-
roradiometer (MODIS/Terra) during 2001–2018, available at https://lpdaac.usgs.gov/product_search/?query=-
MOD11%26view=cards%26sort=title. The MOD11A1 includes two instantaneous observations at 10:30 and 
22:30 local time every day with a resolution of 1 km, and the average of these two observations was compared 
to the average of the simulation results at the corresponding time. The MOD11A2 provides 8-day averaged 
LSTs derived from MOD11A1 to estimate linear trends of LSWT (Song et al., 2016; Zhang et al., 2014; Zhao 

https://lpdaac.usgs.gov/product_search/?query=MOD11%26view=cards%26sort=title
https://lpdaac.usgs.gov/product_search/?query=MOD11%26view=cards%26sort=title
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et al., 2020). The obvious outliers have been removed, and the missing values in MOD11A2 were filled by linear 
interpolation in the time dimension. All data for each time sample were interpolated onto the model grids by 
sub-grids averaging.

We also utilized GloboLakes LSWT Data set including daily averaged LSWTs with a resolution of 0.05° (Carrea 
& Merchant, 2019; Politi et al., 2016) to evaluate the modeled LSWT trends over a longer time range (1996–2018). 
This data set has been also extensively evaluated and validated using in-situ observations (MacCallum & 
Merchant, 2012; Zhang et al., 2021; Zhao et al., 2020). GloboLakes LSWT Data set includes data from 1 June 
1995–31 December 2016, and the data after 2017 can be downloaded from Copernicus Climate Data Store 
(https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.d36187ac?tab=overview).

Note that, we have removed the grids (not shown in Figure 1b) near the lake shoreline that may affect our analysis 
both in model results and satellite data.

2.3.  Model Description

The WRF-Lake Model is a 1-D mass and energy balance lake model based on the Community Land Model version 
3.5, which originated from the eddy diffusion model developed by Henderson-Sellers (1985) and Hostetler and 
Bartlein (1990), then further was developed by Subin et al. (2012) and Gu et al. (2015). The model is discretized 
to solve for the temperature on different layers, including 10 or 25 layers of water and ice (25 used here), up to 5 
layers of snow on the lake ice, and 10 layers of soil at the lake bottom (Gu et al., 2015; Huang et al., 2019; Subin 
et al., 2012; Wu et al., 2020).

Figure 2.  Linear regression of the observation at Nam Co station (Y-axis) with respect to C-China Meteorological Forcing Data set (CMFD) (X-axis): (a) surface 
air temperature (SAT), (b) surface specific humidity (SSH), (c) surface pressure (SP), (d) 10 m wind speed (WS), (e) downward shortwave radiation (SW↓), and (f) 
downward longwave radiation (LW↓). 𝐴𝐴 𝑋𝑋 − 𝑌𝑌  is the mean bias of C-CMFD compared to Nam Co station observation and N is the number of samples. The right arrows 
in 𝐴𝐴 𝑋𝑋 − 𝑌𝑌  and root mean square error indicate the changes in their values before and after linear adjustment. The color of scatters represents the normalized Gaussian 
kernel density, and the larger values indicate more points around.

0

https://cds.climate.copernicus.eu/cdsapp
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The model was developed for shallow freshwater lakes originally and inapplicable to deep and brackish lakes 
like LNC (Fang et al., 2017). Huang et al. (2019) and Wu et al. (2020) improved the WRF-Lake model for TP 
lakes by replacing the constant surface roughness lengths with a parameterized scheme, increasing the turbulent 
mixing, decreasing the light extinction coefficient, and adjusting Tdmax (for details, see Huang et al., 2019; Subin 
et al., 2012; Wu et al., 2020).

At the lake surface layer, the energy balance needs to be satisfied (Subin et al., 2012):

�(1 − �)��↓ +
(

��↓ − ��� 4
�
)

− ��↑ − ��↑ = �↓� (4)

where α is the lake surface albedo to the shortwave radiation SW↓ (W m −2) and β is the absorption rate of the net 
shortwave radiation by lake surface (β = 0.2 for the water depth >4 m). The term ��↓ − ��� 4

�  is net downward 
longwave radiation with the lake surface emissivity ε = 0.97 and σ = 5.67 × 10 −8 W m −2 K −4. LW↓ is downward 
longwave radiation (W m −2), and Ts (K) is the water temperature at the lake surface. SH↑ and LH↑ are upward 
sensible and latent heat fluxes (W m −2), respectively, and G↓ represents downward heat flux (W m −2) from the 
surface layer into the lake.

The controlled equation of the thermal diffusion model in the water body is given by

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
=

𝜕𝜕

𝜕𝜕𝜕𝜕

[

(𝑘𝑘𝑚𝑚 + 𝑚𝑚𝑑𝑑𝑘𝑘𝑒𝑒)
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

]

−
1

𝑐𝑐𝑤𝑤

𝑑𝑑Φ

𝑑𝑑𝑑𝑑
� (5)

where T is water temperature (K) at depth z (m). t is time (s) and cw is the volumetric heat capacity (J m −3 K −1). 
km is the molecular diffusion coefficient (m 2 s −1), and ke is the wind-driven eddy diffusion coefficient (m 2 s −1).  

�� =

{

0, � < 25�
60, � ≥ 25�

 is an enhanced mixing factor of ke to compensate for the mixing effect caused by certain physical 

processes that the model fails to describe (Subin et al., 2012; Wu et al., 2020). Φ = (1 − �)(1 − �)��↓e−�max(�−�0 ,0) 
is the shortwave radiation (W m −2) penetrating into the depth z. And z0 = 0.6 m is the minimum depth where no 
additional absorbed shortwave radiation. The light extinction coefficient η was set to a constant of 0.1 m −1 close 
to the observation (Wang et al., 2009). Additionally, Tdmax is also a vital parameter related to the mixing and 
freeze-thaw processes, and it was set to 3.6°C (Lazhu et al., 2021).

2.4.  Experimental Design and Analysis

The WRF-Lake model was driven by the adjusted C-CMFD and integrated continuously from 1 June 1979 to 31 
December 2018 with a time step of 10 min, where the forcing data were also interpolated linearly to every 10 min. 
The running in 1979 was for spin-up so not analyzed. For a simple initial condition, we ran the model starting 
from a state where the lake is fully mixed vertically with a temperature of 3.5°C. These settings were applied to 
the offline experiments listed in Table 1.

The CTRL-2D was simulated over independent model grids to analyze the interdecadal variation and long-term 
trend of LSWT in LNC over 1980–2018, and the results were regionally averaged over the lake to mitigate the 
effect of intralake heterogeneity (Woolway & Merchant, 2018). As a base for subsequent sensitivity experiments, 
CTRL-1D was simulated at a single point for efficiency, and its results should have a similar long-term trend and 
interannual variations to CTRL-2D.

Experiments Forcing data

CTRL-2D Adjusted C-CMFD over independent model grids with actual lake depths (Figure 1b)

CTRL-1D Regional averaged adjusted C-CMFD over LNC as a single point with the mean lake depth of 50 m

EXP-F Based on CTRL-1D, a series of perturbations were added separately on the climatic mean of each 
forcing variable

EXP-Z Based on CTRL-1D, but the forcing data were decorrelated on an interannual scale in each month

Table 1 
Experimental Design



Journal of Geophysical Research: Atmospheres

SHI ET AL.

10.1029/2021JD036320

7 of 22

2.4.1.  Changing the Climatic Mean Atmospheric Forcing Variables

To investigate how the climatic perturbations of each forcing variable affect LSWT over the climatic mean state, 
we performed a set of experiments (EXP-F) for each forcing variable using the change factor approach that is 
traditionally utilized to analyze the sensitivity of a system to climate change (Butcher et al., 2015; Magee & 
Wu, 2017). Given a forcing variable, we first calculated its standard deviation σm monthly (m = 1, 2, …, 12), 
and then added respective perturbation λnσm to the base value for each month in all years with other variables 
unchanged. Here λn varied from −3.0 to 3.0 with equally spaced increments of 0.2 and so there are 31 sample 
experiments (n = 1, 2, …, 31). In particular, the experiment with λn = 0 was identical to the control experiment 
(CTRL-1D), that is, there was no change for all forcing variables.

It should be noted that the perturbation ranges were not selected subjectively but based on the variation character-
istics of the variables themselves, so the actual climatic extremes are covered conservatively and avoid unrealistic 
scenarios (Stetler et al., 2021). Additionally, it has been proven that each experiment retains the same interannual 
variability and long-term trend.

Based on the above experiments, a climatic mean series LSWT
(

�
)

 can be obtained by calculating climatic 
means for the set of experiments corresponding to a given forcing variable F, where the overbar symbol denotes 
the climatic state. We can define the absolute sensitivity Sa of LSWT response to each atmospheric forcing varia-
ble F, where �� = �LSWT∕��  . Furthermore, because the nth experiments with the same λn have the same magni-
tude of climate perturbation for all variables, we can also define relative sensitivity Sr to compare the relative 
magnitude that LSWT responds to each forcing variable under per unit standard deviation of climate perturbation. 
Here Sr = σSa, and σ is the annual mean standard deviation of a given forcing variable.

2.4.2.  Estimating the Contributions of Forcing Variables to the LSWT Trend

In this study, a method based on partial derivatives (Equation 6) was used to estimate the contributions of 
atmospheric forcing variables to the LSWT trend of LNC. This method has been widely applied to evaluate 
the contributions of climatic factors to hydrological or ecological changes (Roderick et  al.,  2007; Wang, 
Wang, et  al.,  2015; Y. Yan et  al.,  2019). This approach assumes that on the first order (long-term scale), 
the trend of LSWT (i.e., 𝐴𝐴 dLSWT∕𝑑𝑑𝑑𝑑 ) should respond linearly to the changes of forcing variables (Austin & 
Colman, 2007):

(�LSWT
��

)

�
≈
∑

�

�LSWT
���

���

��
≈
∑

�

���
���

��� (6)

Accordingly, we could quantify the contribution of each forcing variable 𝐴𝐴 𝐴𝐴𝑖𝑖 to the trend of LSWT based on abso-
lute sensitivities 𝐴𝐴 𝐴𝐴𝑎𝑎𝑖𝑖 and the trend of forcing variables 𝐴𝐴 𝐴𝐴𝐴𝐴𝑖𝑖∕𝑑𝑑𝑑𝑑 .

Note that, Equation 6 implies two assumptions: first, 𝐴𝐴 𝐴𝐴𝑎𝑎𝑖𝑖 is a constant that is, 𝐴𝐴 LSWT

(

𝐹𝐹 𝑖𝑖

)

 varies linearly; second, 
the interannual change in LSWT resulted from one forcing variable 𝐴𝐴 𝐴𝐴𝑖𝑖 approximately equals the climatic response 
of LSWT to the variable, that is, 𝐴𝐴 𝐴𝐴LSWT∕𝜕𝜕𝜕𝜕𝑖𝑖 ≈ 𝑆𝑆𝑎𝑎𝑖𝑖 .

However, the changes (i.e., ���∕�� ) in forcing variables are influenced by their interactions, which may 
confound their individual contributions to the trend of LSWT. These interactions are expressed as the colline-
arity among forcing variables on an interannual scale, which originates from the strong coupling of the climate 
system.

To eliminate the effect of interactions as much as possible, we used zero-phase component analysis (ZCA) to 
decorrelate the forcing variables (i.e., to reduce the linear correlation among different forcing variables) for each 
month. This method is commonly used for data pre-processing in machine learning and is also applied to the 
reconstruction of climate fields (Bocinsky & Kohler, 2014). Specifically, the standardized anomaly matrix 𝐴𝐴 𝑭𝑭

∗
𝑝𝑝×𝑠𝑠 

with p forcing variables and s times are calculated first. Each row 𝐴𝐴 𝐴𝐴 ∗
𝑖𝑖
= 𝐹𝐹𝑖𝑖 − 𝐹𝐹 𝑖𝑖∕𝜎𝜎𝑖𝑖 of the matrix 𝐴𝐴 𝑭𝑭

∗ representing 
a forcing variable, where 𝐴𝐴 𝐹𝐹 𝑖𝑖 is the mean value (i.e., climatic state) and 𝐴𝐴 𝐴𝐴𝑖𝑖 is the standard deviation. Then we take 
a linear transform 𝐴𝐴 𝑾𝑾  on 𝐴𝐴 𝑭𝑭

∗ :
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𝒁𝒁
∗
= 𝑾𝑾 𝑾𝑾

∗
=

(

𝑼𝑼𝚲𝚲
−

1

2𝑼𝑼
𝑇𝑇
)

𝑭𝑭
∗� (7)

where 𝐴𝐴 𝑾𝑾 = 𝚺𝚺
−

1

2 = 𝑼𝑼𝚲𝚲
−

1

2𝑼𝑼
𝑇𝑇  is defined as ZCA transformation (also called Mahalanobis transformation, Kessy 

et al., 2018). The covariance matrix 𝐴𝐴 𝚺𝚺 = 1∕𝑛𝑛𝑭𝑭
∗
𝑭𝑭

∗T have orthonormal eigenvectors in columns of 𝐴𝐴 𝑼𝑼 and eigen-
values on the diagonal of 𝐴𝐴 𝚲𝚲 , so that 𝐴𝐴 𝚺𝚺 = 𝑼𝑼𝚲𝚲𝑼𝑼

𝑇𝑇 . Here the correlation coefficient between the rows of 𝐴𝐴 𝒁𝒁
∗ is 0, but 

𝐴𝐴 𝒁𝒁
∗ is as close as possible to the original data 𝐴𝐴 𝑭𝑭

∗
. For more derivations and properties about ZCA transformation 

please see the paper of Kessy et al. (2018). Finally, 𝐴𝐴 𝒁𝒁
∗ is transformed back to the original physical magnitude to 

obtain the decorrelated forcing variables 𝐴𝐴 𝒁𝒁 , where each row 𝐴𝐴 𝐴𝐴𝑖𝑖 = 𝑍𝑍∗
𝑖𝑖
𝜎𝜎𝑖𝑖 + 𝐹𝐹 𝑖𝑖 . Based on the decorrelated forcing 

data, we ran the experiment EXP-Z similar to CTRL-1D.

Replacing the F in Equation 6 with the decorrelated forcing variables 𝐴𝐴 𝒁𝒁 , we get
(dLSWT

��

)

�
≈
∑

�

���
���

��� (8)

where ������∕�� could be understood as the individual contribution from the ith forcing varia-
ble. Note that 𝐴𝐴 (𝑑𝑑LSWT∕𝑑𝑑𝑑𝑑)𝑍𝑍 does not contain the contribution of interactions among different atmos-
pheric forcings that are contained in (�LSWT∕��)� of Equation  6. So this contribution of interactions 
among different forcing variables could be represented as the difference of Equations  6 and  8, that is, 
(�LSWT∕��)� − (�LSWT∕��)� ≈

∑

�
������∕�� −

∑

�
������∕�� .

2.5.  Linear Trend Analysis

The ordinary linear regression against time was used to estimate the long-term trend of variables and thereafter 
denoted by 𝐴𝐴 𝐴𝐴 ± 2𝑆𝑆𝑆𝑆 , where B and SE are estimated values of regression slope and standard error, with ±2 SE as 
an approximation to the 95% confidence interval.

For two regressions with results of 𝐴𝐴 𝐴𝐴1 ± 2𝑆𝑆𝑆𝑆1 and 𝐴𝐴 𝐴𝐴2 ± 2𝑆𝑆𝑆𝑆2 , where their predictors are from the same popula-
tion, Z-test was used to test whether the two slopes are equal significantly under the null hypothesis of 𝐴𝐴 𝐴𝐴1 − 𝐵𝐵2 = 0 
(Clogg et al., 1995):

� = �1 − �2
√

(��1)2 + (��2)2
� (9)

which was used to test whether there was a significant difference in the LSWT trends between EXP-F and 
CTRL-1D.

For those variables with a noticeable trend shift, piecewise linear regression (PLR) is an effective and intuitional 
way to detect the breakpoint (Ying et al., 2015). Here we assume that there is only one unknown endpoint located 
in an interval and no continuity constraint at the breakpoint. The significance of the PLR model could be tested 
by F-test and for more details refer to Toms and Lesperance (2003) and Ying et al. (2015).

3.  Results
3.1.  Model Validation

The simulation results from the experiment CTRL-2D during 2001–2018 are compared with MODIS in 
Figure 3a. As the remote-sensed satellite data are rather sparse during the ice-covered period (January–April) 
due to the wrong discrimination of clouds from lake ice or snow (Lazhu et al., 2016), we only carried out compar-
isons during the ice-free period (May–December). The model results showed a reasonable seasonal variation 
(Figure 3a) with a temporal correlation coefficient of 0.93. While there was still an overestimation of LSWT with 
mean bias and RMSE of 0.38°C and 1.47°C, respectively. This could be attributed to the skin effect and additional 
cold bias prevalent in MODIS data (Crosman & Horel, 2009; Wilson et al., 2013; Zhao et al., 2020).

Figures 3b and 3c present a comparison of observations and simulations of the thermal structure at the monitoring 
site in LNC during 2012–2013. The model well reproduced the characteristic of a dimictic lake that two thorough 
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vertical mixing with a small temperature gradient occur before and after the summer thermal stratifica tion (July–
October), and the stratification is strongest in October with a metalimnion up to 30 m (Wang, Huang, et al., 2020).

The interannual variations of simulated LSWT basically accorded with MODIS data (Figure  4a) with a 
correlation coefficient R = 0.85, but with a smaller trend (0.12 ± 0.28°C decade −1) relative to MODIS data 
(0.18  ±  0.36°C  decade −1) during the ice-free period, and the warming was not significant despite positive 
values. Spatially, as shown in Figures 5a and 5b, the simulations presented a similar pattern to MODIS over the 
central-eastern lake with the spatial correlation coefficient of 0.52 and the proportion of the grid points with the 
same sign (i.e., trends were in the same direction) is 74%. The simulation results were more spatially heteroge-
neous than MODIS and even cooled in the west, leading to the smaller spatially averaged trend than MODIS 
(Figure 4a). Extending the time to 1996 as with GloboLakes, there was still good consistency in the interannual 
variation (R = 0.82) but a little trend in either simulation and GloboLakes (Figure 4b), and intralake heterogeneity 
increased with more cooling grid points (Figures 5c and 5d).

To sum up, the WRF-Lake model can well reproduce the seasonal evolution of LSWT and water temperature 
profile, as well as interannual variation and long-term trend over the last 20 years despite a warm systematic bias 
of approximately 0.4°C.

3.2.  Lake Warming and Warming Hiatus

Different from the validation above, we only analyzed the trend from June to November (ice-free period common 
to all years 1980–2018) hereafter, because there was an apparent reduction of ice cover duration, that is, later 
freezing date in December and earlier break-up date in May from model results (not shown), which would over-
estimate the LSWT trend.

Figure 3.  (a) The daily simulated land surface temperature (LST) (red solid line) and Moderate Resolution Imaging 
Spectroradiometer data (MOD11A1, black dots) during 2001–2018. The evolution of water temperature profile from 
simulations (b) and observations (c) during 2012–2013.
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Figure 6a shows the daily trends of simulated LSWT for the ice-free period 
with a significant shift around 1997 (p < 0.01). The trends of LSWT at the 
days of a year during 1980–1997 were similar to those during 1980–2018, 
while there was almost no significant trend after 1997. In summer (July–
September), the trend of 0.23 ± 0.10°C decade −1 was smaller than in spring 
and autumn (0.35 ± 0.10°C decade −1) during 1980–2018.

Focusing on the average trend over the ice-free period (Figure 6b), the LSWT 
showed an overall upward trend of 0.29  ±  0.09°C  decade −1 over the past 
40 years. The primary warming was completed before 1997 with an average 
trend of 0.30 ± 0.18°C decade −1, followed by a hiatus that the LSWT jumped 
by over 1°C after 1997. During this hiatus, the LSWT maintained an oscil-
lation at over 9°C with a slightly negative trend of −0.08 ± 0.24°C decade −1 
and a larger interannual variability (average of 0.31°C yr −1) than the warm-
ing stage (0.17°C yr −1). The dramatic jump in LSWT in 1997/1998 directly 
resulted from the abrupt change in SAT (Figure 7a), which might be linked 
with the transition of the Atlantic Multidecadal Oscillation (AMO) from 
negative to positive phase (Feng & Hu, 2008; Zhang et al., 2020), and with 
strong El Niño event that raised the water level of TP lakes in that year 
(Hwang et al., 2016).

The timing of this hiatus after 1997 is fairly consistent with the previous 
report on a global scale that most lakes exhibited a warming hiatus to respond 
to the global warming hiatus during 1998–2009, where the SAT was the 
primary predictor and SW↓ was secondary (Winslow et  al.,  2018; Zhong 
et al., 2016). However, as shown in Table 2 and Figure 7, the forcing vari-
able SAT did not present a corresponding trend shifted to hiatus and even 
accelerated warming after 1997 due to the cloud-radiation feedback (Duan 
& Xiao, 2015). Owing to increasing moisture and deep cloud covers during 

1980–2018 (Yang et al., 2012), the SW↓ presented an overall declining trend, and it is notable that this declining 
trend weakened from −4.02 ± 5.55 to −0.24 ± 6.69 W m −2 decade −1 since 1998. Hence the SAT and SW↓ could 
not account for this hiatus with the global coincidence.

Figure 4.  Interannual variation and long-term trend of simulated lake 
surface water temperature (red) compared with (a) Moderate Resolution 
Imaging Spectroradiometer data (MOD11A2, blue) during the ice-free period 
over 2001–2018 and with (b) GloboLakes (blue) over 1996–2018. Shaded 
areas indicate the confidence interval for the regression estimate. R is the 
interannual correlation coefficient. Note that the simulated values in each 
panel are retrieved only for the times corresponding to the satellite data, so the 
simulated values in the two panels are not identical.

Figure 5.  Spatial distributions of the lake surface water temperature trends in the simulations (a, c), Moderate Resolution 
Imaging Spectroradiometer retrievals over 2001–2018 (b), and GloboLakes over 1996–2018 (d). The black dots represent the 
significance at the p < 0.05 level of T-test. R is the spatial correlation coefficient and PS is the proportion of the grid points 
with the same sign.
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Whereas the SSH and WS did show significant differences before and after 
1997 (Table 2). Particularly the SSH turned from increasing to decreasing 
with an overall trend of 0.08 ± 0.23 g kg −1 decade −1, and the increased SSH 
can raise LSWT by reducing the upward latent heat flux. The WS continued 
to decrease until the late 1990s and then shifted to a slightly increasing trend 
with an overall trend of −0.17 ± 0.07 m s −1 decade −1 for 1980–2018, and the 
reduced WS could warm lakes by weakening the vertical mixing and surface 
turbulent heat fluxes in the lake, which have been widely observed in north-
ern hemisphere lakes (Huang et al., 2012; Woolway et al., 2019).

As for the LW↓, it has an almost exact opposite trend to SW↓ (Table  2) 
with a correlation coefficient of −0.71 (p < 0.01) between them, and there 
was almost no trend in their sum (total downward radiation, TR↓). It could 
be  assumed that the effects of long-term changes in LW↓ and SW↓ could 
counterbalance each other here if the response of the lake to them is equiva-
lent on a long-term scale. Therefore, interdecadal changes in the SSH and WS 
might better explain the hiatus of lake warming after 1997.

The shifts of trends in LSWT and forcing variables above are accord-
ingly reflected in the spatial distribution, as shown in Figure 8, where the 
surface pressure is omitted here because of its minimal trend relative to the 
other variables. LSWT changed faster in shallow areas than in deep areas 
(Figures 8a–8c) because the shallow water has a smaller heat capacity and 
is therefore more responsive to the changes in the overlying atmosphere. 
However, the shallow areas were not warmed or cooled uniformly; for exam-
ple, the western shoal water of LNC warmed faster than the eastern water 
during 1980–1997 but cooled during 1998–2018 whereas the eastern water 
kept warming partially, which resulted in more pronounced warming in the 
east than west over 1980–2018. The differences should be attributed to the 
east-west heterogeneity of forcing variables' trends and their interdecadal 
shifts.

Before 1997, all variables showed relatively uniform distributions of trends, where all variables facilitated the 
rising LSWT excluding SW↓. During 1998–2018, the surface air warming was enhanced over eastern LNC based 
on pre-1997, and the SSH presented a decline in exact contrast to pre-1997; the WS showed a pattern of increas-
ing (decreasing) trends over the western (eastern) LNC, and this east-west opposite mode can be neutralized by 
spatial averaging (Table 2) but still implied a link to the trend shift of LSWT. The spatial pattern of LW↓ was the 
almost exact opposite of the SW↓ during the three periods, hence there was almost no trend in the total downward 
radiation (Figures 8s–8u).

In summary, LNC was warmed before 1997 and then oscillated at a high level, that is, a warming hiatus. The 
decrease of SSH and recovered WS during the hiatus might be essential factors in counteracting the effects of 
the accelerated rising SAT over the period. Whereas the LW↓ and SW↓ almost counteracted each other during the 
entire 1980–2018.

3.3.  Sensitivity of LSWT Response to Atmospheric Forcing Variables

Before discussing the quantitative contribution of each atmospheric forcing variable, we estimated the sensitivity 
of LSWT response to changes of forcing variables over the climatic mean state, based on the results of experi-
ments EXP-F.

Within the range of historical climate extremes during 1980–2018, the multi-year average of LSWT varied 
quasi-linearly with the deviation of atmospheric forcing variables from the climatic mean state (red lines in 
Figure 9), and the slope was defined as the absolute sensitivity Sa that is validated as a constant here. The increas-
ing thermodynamic variables, such as SAT, SSH, SW↓, and LW↓, would increase LSWT; increasing dynamical 
variables like WS would decrease LSWT on the contrary, whereas the slight perturbation of surface pressure 

Figure 6.  (a) Trends of simulated lake surface water temperature (LSWT) 
(solid lines) at the day of a year across different time spans during the ice-free 
period with the 95% confidence interval (shaded areas); (b) interannual 
variation (solid line) and trends (dashed lines) of simulated LSWT during 
1980–1997 (red), 1998–2018 (blue), and 1980–2018 (purple).
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produced no significant impact on LSWT. Note that SW↓ and LW↓ equally affect LSWT numerically with Sa of 
0.043°C (W m −2) −1 and 0.040°C (W m −2) −1, which confirms our previous assumption that the response of the 
LSWT to them is equal on a long-term scale.

Figure 7.  Interannual variations (solid lines) and trends (dashed lines) of the anomaly for lake surface water temperature (LSWT) (red) and forcing variables (blue): (a) 
surface air temperature (SAT), (b) surface specific humidity (SSH), (c) surface pressure (SP), (d) 10 m wind speed (WS), (e) downward shortwave radiation (SW↓), and 
(f) downward longwave radiation (LW↓). R is the correlation coefficient between LSWT and each forcing variable with the corresponding p-value.

Trend

p-valueVariables 1980–1997 1998–2018 1980–2018

LSWT (°C decade −1) 0.30 ± 0.18 −0.08 ± 0.24 0.29 ± 0.09 0.001

SAT (°C decade −1) 0.13 ± 0.43 0.38 ± 0.37 0.45 ± 0.14 0.415

SSH (g kg −1 decade −1) 0.10 ± 0.25 −0.31 ± 0.21 0.08 ± 0.23 0.013

SP (hPa decade −1) 0.31 ± 0.33 −0.06 ± 0.29 0.05 ± 0.11 0.096

WS (m s −1 decade −1) −0.40 ± 0.21 0.09 ± 0.12 −0.17 ± 0.07 <0.001

SW↓ (W m −2 decade −1) −4.02 ± 5.55 −0.24 ± 6.69 −3.27 ± 2.25 0.384

LW↓ (W m −2 decade −1) 3.76 ± 3.35 0.48 ± 3.32 3.26 ± 1.23 0.164

TR↓ (W m −2 decade −1) 0.16 ± 1.65 −0.38 ± 3.59 0.30 ± 5.32 0.998

Table 2 
The Trends Across Different Time Spans of LSWT and Forcing Variables, With the Significance Level of Differences in 
Trends Before and After 1997
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Relative sensitivity Sr was defined for comparability across all forcing variables (see subsection  2.4.1). The 
results show that the most influential factor on LSWT is SW↓ with Sr = 0.59°C, followed by a comparable extent 
of SAT (0.39°C), LW↓ (0.37°C), WS (−0.36°C), and finally by the SSH (0.30°C). The strong effects of radiation 
and temperature are as expected because they are characteristics of high-altitude lakes (Kirillin et al., 2017; Wen 
et al., 2016), whereas the SSH and WS show a greater impact on LSWT change in LNC relative to Ngoring Lake 
that is a large but shallow freshwater lake on TP with elevation also over 4,000 m (Wen et al., 2016).

Contrasting with the symmetric responses of LSWT to the opposite anomalous climates (red lines in Figure 9), 
the responses of long-term LSWT trend are asymmetrical (blue lines in Figure 9) for changing thermodynamic 
variables. Specifically, the long-term warming trends of the lake tend to be amplified in the climates that induced 

Figure 8.  The trend (shaded area) of the anomaly for (a–c) lake surface water temperature (LSWT) and atmospheric forcing variables (d–f) surface air temperature 
(SAT), (g–i) surface specific humidity (SSH), (j–l) 10 m wind speed (WS), (m–o) downward shortwave radiation (SW↓), (p–r) downward longwave radiation (LW↓), and 
(s–u) total downward radiation (TR↓) during 1980–1997 (column 1), 1998–2018 (column 2), and 1980–2018 (column 3). The contours in (a–c) indicate the bathymetry, 
and the black dots represent the significance at the p < 0.05 level. The labels of colorbars are units of the long-term trends of variables.
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lower climatic mean LSWT (Cold Climate, CC) but little change in the opposite climates (Warm Climate, WC). 
Because during the warming stage (e.g., 1980–1997 as shown in Figure 10a), the cooling in CC relative to the 
normal climate (NC) is more pronounced than the warming in NC, and thereafter the two deviations relative to 
NC are of comparable magnitude; thus the warming trend appears to be amplified in CC. But the situation is not 
present in the experiments on WS (Figure 10b). These phenomena might be explained qualitatively by the impact 
of atmospheric forcing variables on the timing of thermal stratification.

The LSWT during an ice-free period is greatly governed by the timing of thermal stratification when the LSWT 
is above Tdmax, because the lake is mixing up and down before then with a limited rate of rise in LSWT (Boehrer 
& Schultze,  2008). In the extreme CC, both the timings of ice-off and thermal stratification are delayed by 
approximately 15 days around May (Figure 10c) and the increased albedo causes a decrement of absorbed solar 
radiation in May relative to NC, leading to a lower base temperature in June. In WC, the increment of absorbed 
solar radiation in April is insufficient to match the reduction in May in CC owing to the solar radiation peaking 
in May before the rainy season (You et al., 2007). Hence, the number of days advanced for the onset of thermal 
stratification in WC is less than the delay in CC (Figure 10e), which may explain why the daily LSWT in WC is 
closer to NC (Figure 10c).

But likewise in WC, the decrease of WS attenuates not only the surface heat flux but also the vertical mixing 
(Huang et al., 2012; Woolway et al., 2019), which directly weakens the mixing after ice melt and brings earlier 

Figure 9.  Changes in multi-year average (red lines) and long-term trend (blue lines) of LSWT with perturbed atmospheric 
forcing variables: (a) surface air temperature (SAT), (b) surface specific humidity (SSH), (c) surface pressure (SP), (d) 10 m 
wind speed (WS), (e) downward shortwave radiation (SW↓), and (f) downward longwave radiation (LW↓), including the 
values of absolute sensitivity (Sa) and relative sensitivity (Sr). Shaded areas indicate the 95% confidence intervals. All changes 
(Δ) are the differences between the simulation of each sensitive experiment and the control experiment simulation. The other 
forcing variables are kept in their original values for each group of individual experiments.
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thermal stratification and thereby raises the later base LSWT in NC (Figures 10d and 10f). Thus, the response of 
the LSWT trend to the WS is symmetrical relative to the thermodynamical variables.

The phenomena described above suggest that the changes in meteorological forcing variables before May can 
influence LSWT after June by adjusting the timing of ice-off and thermal stratification (Austin & Colman, 2007). 
This delayed effect is more pronounced in colder and deeper lakes due to the larger heat capacity (Woolway & 
Merchant, 2017).

3.4.  Contributions of Atmospheric Forcing Variables to the Trend of LSWT

Here we need to validate the second assumption in Equation 6 that is, �LSWT∕�� ≈ �� . To this end, we esti-
mated the interannual variation by the forward Euler difference based on Equation 6 using simulated annual mean 
LSWT in 1980 as the initial value, and the estimated interannual increments should be close to the simulation 
if the assumption is acceptable. As shown in Figures 11a and 11b, the estimation results reproduce the rising 
and hiatus of LSWT with a correlation coefficient of up to 0.93 with the simulation results, and the interannual 
increments (calculated by backward difference) of the estimated and simulated results are close with a correlation 
coefficient of 0.82. The estimated long-term trend is overestimated but still acceptable.

Considering the effects of interactions among forcing variables on the long-term LSWT trend, we compared the 
simulations of CTRL-1D and EXP-Z driven by the original and decorrelated forcing data in Figure 11c, respec-
tively. EXP-Z produces a smaller trend (0.21 ± 0.09°C decade −1) than CTRL-1D (0.29 ± 0.09°C decade −1), and 
the reduction of 0.08°C decade −1 (accounting for 27.6% of CTRL-1D) is interpreted as the cross contribution of 
interactions among forcing variables, which is indeed important to the long-term LSWT trend of LNC.

Figure 10.  (a–b) Interannual variations (solid lines) and trends (before and after 1997; dashed lines) of LSWT in warm 
climate (WC, red lines), normal climate (NC, black lines), and cold climate (CC, blue lines); (c–d) daily lake surface water 
temperature (LSWT) and (e–f) daily temperature difference between subsurface (TS, at 0.5 m) and bottom (TB, at 50 m), 
averaged during 1980–1997. LSWT = 0°C was considered as the timing of ice-off in (c–d); TS – TB > 0°C was considered as 
the onset of thermal stratification, which is indicated by vertical dashed lines in (e–f). The left and right columns illustrate the 
effects of changes in surface air temperature and 10 m wind speed, respectively.
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Based on Equations 6 and 8, we further estimated the individual contribu-
tions and cross contribution of atmospheric forcing variables to the trend of 
LSWT. During 1980–2018 (Figure 12a), the weakened WS, rising SAT, and 
increased LW↓ caused the main LNC warming with contributions of 0.14, 
0.12, and 0.08°C decade −1, respectively. The contribution rates of WS, SAT, 
and LW↓ to the estimated long-term LSWT trend (0.4°C  decade −1) were 
about 35%, 30%, and 20%. The decline of SW↓ caused a negative contribution 
of −0.06°C decade −1 (−15%); the SSH contributed only −0.01°C decade −1 
(−2.5%) because of its more flatter and even negative trend on the long-term 
scale after decorrelating; the surface air pressure contributing 0.08% of 
LSWT trend is omitted here for its negligible effect. The cross contribution 
from the interactions among forcing variables contributed 0.13°C decade −1 
(32.5%), which is close to the contribution rate of 27.6% derived from 
CTRL-1D and EXP-Z.

As shown in Figure 12b, the contributions of independently varying (decor-
related) forcing variables also retained interdecadal shifts before and after 
1997, but there was no significant shift in the contribution of SW and cross 
contribution among different forcing variables. The primary lake warm-
ing before 1997 was contributed by the weakened WS and increased LW↓, 
which led to the LSWT warmed by 0.22 and 0.18°C decade −1, respectively. 
However, they showed much smaller contributions of 0.05°C decade −1 to the 
LSWT trend after 1997, which slowed down the LNC warming. The indi-
vidual contribution of SAT was mainly shown after 1997 (0.11°C decade −1). 
The SSH showed a remarkable negative contribution of −0.25°C decade −1 
to the LSWT trend after 1997 despite little impact before 1997. Thus SSH 
played a non-negligible role in the shift from warming to cooling trend of 
LNC before and after 1997, which was overlooked in previous studies.

4.  Discussion
4.1.  Comparison With Previous Studies

In this study, LNC was warmed slower than the ambient air during ice-free 
period, which is opposite to a global-scale survey revealing that ice-covered 
lakes are typically warming faster than ambient air (O’Reilly et al., 2015). 
In fact, the rapid warming of many ice-covered lakes are associated with 
increases in both summer SAT and SW↓ (O’Reilly et al., 2015), and ice cover 
reduction plays a minor role (Zhong et al., 2016). But in LNC, the SW↓ as a 
source of energy declined significantly with a trend of −3.27 ± 2.25 W m −2 
(Figure 7e), and this decline was also prevalent in other areas of TP (Yang 

et al., 2012), for example, which could even offset the lake warming from SAT in Lake Ngoring and Lake Gyaring 
(Kirillin et al., 2017). In this view, we consider that the decline of SW↓ is an important reason why the warming 
of LNC is different from that of other ice-covered lakes worldwide.

Another study on LNC showed a lake warming rate in summer (July–September) of 0.52 ± 0.25°C decade −1 
during 1979–2012 (Huang et al., 2017), which is close to but less than the air warming rate in their study and 
greatly more than our result of 0.28 ± 0.14°C decade −1 during the same period. The huge difference could be 
partly explained. First, their daily average simulation result is lower than the observation (Figure 6 in Huang 
et al., 2017) and we assume it is a systematic bias. Then the simulated lake system is actually in a cold state 
relative to the real state and therefore the warming rate tends to be amplified based on the analyses in Section 3.3 
(Figure 10).

In addition to the contributions to LNC warming from SAT and LW↓ (Huang et al., 2017; Su et al., 2019), this 
study emphasized the role of interdecadal shifts in SSH on the LNC warming hiatus after 1997. Further, we 

Figure 11.  (a) Estimated (red) and simulated (blue) interannual variations 
(solid lines) of lake surface water temperature with long-term trends(dashed 
lines) based on original forcing data, and their (b) interannual increments. (c) 
Comparison between simulations based on original (blue) and decorrelated 
(red) forcing data. R is the correlation coefficient between two series with the 
corresponding p-value.
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quantitatively estimated the individual contributions of each forcing variable 
and the cross contribution of their interactions to the LSWT long-term trend 
of LNC during 1980–2018.

4.2.  About the Attribution Method

In Equation 6, we simply linearized the lake system on an interannual scale 
and assumed the absolute sensitivity (partial derivative) 𝐴𝐴 𝐴𝐴𝑎𝑎𝑖𝑖

 is a constant. 
But it is natural that the 𝐴𝐴 𝐴𝐴𝑎𝑎𝑖𝑖

 of a given forcing variable 𝐴𝐴 𝐴𝐴𝑖𝑖 should depend 
on the state of other variables 𝐴𝐴 𝐴𝐴𝑗𝑗 , that is, ���(�) = ���(��(�)) . We calculated 
the time-varying ���(�) in every year to represent the variation of atmos-
pheric states, then repeated the calculations similar to Figures 11a and 11b. 
However, there was no significant improvement in the estimated long-term 
trend and interannual increments (not shown). So the overestimated LSWT 
trend (Figure 11a) could not be attributed to the assumption of constant 𝐴𝐴 𝐴𝐴𝑎𝑎𝑖𝑖

 , 
and we speculated this error might be related to the neglected high-order 
partial derivative (Chen et al., 2020) because some variables showed signif-
icant interdecadal shifts. Anyway, our results still provide a quantitative 
perspective for understanding the relative contribution of different atmos-
pheric forcing variables to the long-term trend of LSWT in LNC.

4.3.  Other Deficiencies

There are still some deficiencies to be improved in this study. In the 1-D lake 
model WRF-Lake, the heat fluxes from inflows and outflows are unresolved 
but important for glacial-fed lakes such as LNC (Fink et  al.,  2014; Wan 
et al., 2018). Additionally, some key parameters such as the light extinction 
coefficient should provide feedback on the state of lakes through biochemical 

processes but it was set to a constant, which may underestimate the impact of climate changes on the lake system 
(Rose et al., 2016). Moreover, the 1-D lake model ignores horizontal exchanges of momentum and energy, which 
are important processes for heat transfer and can be further resolved by 3-D models (Wu et al., 2021).

Besides, this study was based on offline simulations with the given external forcing conditions that were not 
obtained from the lake surface, whereas the lake surface is coupled with the overlying atmosphere in real-time 
and thus some feedback processes are ignored. For instance, a weakening of the lake-air temperature gradi-
ent induces a more stable boundary layer and thereby smaller wind speed by altering local circulation (Desai 
et al., 2009). But this error should not be major because the interannual anomalies of the forcing variables are 
dominated by the larger-scale circulation, which tends to be regionally consistent (Huang et al., 2012; Livingstone 
& Padisák, 2007).

5.  Summary
In this study, the 1-D lake model WRF-Lake was driven by the corrected CMFD to simulate the daily LSWT in 
LNC on TP during 1980–2018. The model could well reproduce the seasonal variation of LSWT and thermal 
structure with a warm bias of approximately 0.4°C in LSWT compared to the MODIS and in-situ observations. 
Furthermore, the simulation results also show that the interannual variation and long-term trends of LSWT are 
close to the MODIS data during 2001–2018.

The results show that LNC was warmed with a long-term trend of 0.29 ± 0.09°C decade −1 during the ice-free period, 
which was smaller than the trend of local SAT (0.45 ± 0.14°C decade −1) during the past 40 years. The primary 
warming was completed before 1997 (0.30 ± 0.18°C decade −1) followed by a hiatus that the LSWT jumped to a 
relatively warmer state and maintained an oscillation with a slightly negative trend of −0.08 ± 0.24°C decade −1 
after 1997.

The sensitivity of LSWT response to the atmospheric forcing variables was studied by a series of sensitivity exper-
iments. Within the range of historical climate extremes, LSWT was most sensitive to the climatic perturbation 

Figure 12.  (a) Estimated individual contribution of surface air temperature 
(SAT), surface specific humidity (SSH), and 10 m wind speed (WS), surface 
downward shortwave radiation (SW↓), surface downward longwave radiation 
(LW↓), and their cross contribution (Cross) to the long-term trend of LSWT 
during 1980–2018; (b) Estimated contributions during 1980–1997 (red) and 
1998–2018 (blue). The Sum in legends represents the summation of all bars.
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in SW↓, followed by a comparable extent of SAT, LW↓, WS, and finally the SSH. Moreover, the long-term lake 
warming trends tend to be amplified under a cold lake state induced by thermodynamical variables such as SAT.

We further estimated the individual contributions and cross contribution of atmospheric forcing variables to the 
long-term LSWT trend of LNC. The weakened WS, rising SAT, and increased LW↓ were the most remarkable 
factors warming the LNC with the independent contribution rates of about 35%, 30%, and 20% to the long-term 
LSWT trend during 1980–2018, respectively. Whereas the decline of SW↓ caused a negative contribution rate of 
−15%. The interaction of all atmospheric forcing variables shows a positive contribution rate of 32.5%. Particu-
larly, despite the slight contribution of SSH (−2.5%) to the long-term LSWT trend of LNC, the interdecadal shift 
of SSH trend from increasing to decreasing (Table 2) around 1997 played a non-negligible role in the hiatus of 
LNC warming after 1997.

Overall, we quantitively estimated the individual and cross contributions of different atmospheric factors to the 
long-term LSWT trend during 1980–2018. Meanwhile, we also showed the particularity of warming for a TP lake 
compared to other ice-covered lakes worldwide. Further work should conduct an integrated study of more  lakes 
on TP based on the model or remote sensing information, for an overall understanding of climate change impacts 
on the TP lakes.

Data Availability Statement
These datasets were used in this study: the China Meteorological Forcing Data set (He et al., 2020, available 
at https://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-965612652c49/), the Moderate Resolution Imaging 
Spectroradiometer (MODIS/Terra) Version 6.1 MOD11A1 and MOD11A2 (Wan et al., 2015a; 2015b, availa-
ble at https://lpdaac.usgs.gov/product_search/?query=MOD11%26view=cards%26sort=title), the GloboLakes 
LSWT Data set (Carrea & Merchant, 2019, available at https://doi.org/10.24381/cds.d36187ac), the daily data 
from the weather station on the southeastern shore of Lake Nam Co during 2006–2018 (Wang & Wu, 2018, 2019, 
available at http://poles.tpdc.ac.cn/en/data/c97bce0f-bf67-4dcc-b864-d7e4d8cff62f/), and the long-term data set 
of integrated land-atmosphere interaction observations on the Tibetan Plateau during 2005–2016 (Ma, 2020, 
available at http://dx.doi.org/10.11888/Meteoro.tpdc.270910).

Software - Calculations in this study were made with the GNU Fortran compiler (GFortran) version 7.5.0 
which are available under the terms of the GNU General Public License at https://gcc.gnu.org/wiki/GFortran-
Source. All figures were made by the open-source Python package ProPlot (V0.7.0, available from https://proplot.
readthedocs.io/).
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