孙旭光

教授、博士生导师


办公地址: 大气楼B408

办公电话: 025-89681196

Email: xgsun@nju.edu.cn



孙旭光,教授,博士生导师。兼任中国气象局气候预测研究重点开放实验室副主任,国际气象学与大气科学协会(IAMAS)中国委员会青年工作组成员、中国气象学会热带与海洋气象学委员会委员、国际SCI学术期刊 Sustainability  Frontiers in Climate 编委以及《高原气象》期刊第一届青年编辑委员会常务青年编委。

主要研究方向为气候动力学、气候预测与海气相互作用。专注于我国汛期多尺度旱涝的成因和预测方法研究,瞄准我国汛期旱涝多尺度变异成因,聚焦我国旱涝预测核心技术,重点开展我国汛期季节和次季节旱涝成因与预测方法研究。在考虑热带气候模态影响的同时,重点针对中高纬气候模态的强迫作用,发现了热带和中高纬气候模态协同影响我国汛期旱涝年际变异形态的动力学途径,建立了遥相关-高空急流-旱涝形态耦合关系的物理图像;阐明了海气系统主要年代际振荡信号对我国夏季年代际旱涝格局转型的联合影响与相对贡献,揭示了中高纬海温异常通过大气瞬变涡旋强迫产生相当正压大气响应的动力学机制;发现多尺度次季节信号(如10-30天和30-60天)叠加是我国区域持续性极端强降水发生在季节内特定时段的决定机制,源自于热带和中高纬的夏季10-30天次季节东亚经向振荡模态分别对我国东部南北偶极型和南方型次季节旱涝与极端降水概率变化有重要影响。在这些系统理论创新成果的基础上,研发了基于热带和中高纬最优可预测气候模态和异常相对倾向(SMART)原理的旱涝预测核心技术,并成功应用于我国汛期季节旱涝预测,实现了在国家、全国8个区域和31个省市自治区气候中心的业务化应用,显著提高了我国旱涝预测水平,为解决多尺度、多因子和大气混沌变率制约我国旱涝气候预测准确率的瓶颈提供了重要理论和技术支撑。

主持和参与国家级科研项目(包括国家重点研发计划项目课题、国家自然科学基金项目和国家“973计划项目等)20余项。在国内外学术刊物上发表论文70余篇,其中SCI论文50余篇。合作出版《数值天气预报》教材2本。获教育部高等学校科学技术奖自然科学奖一等奖(2007)与江苏省气象学会气象科技成果奖(基础研究成果奖)一等奖(2021),国家发明专利1项(第一完成人)和软件著作权26项。

   

工作经历:

2018.12-至今      教授       全球最大的赌钱网(亚洲)集团有限公司

2013.09-2014.08   访问学者  美国俄克拉荷马大学风暴分析与预报中心

2009.10-2010.01   访问学者  日本东京大学气候系统研究中心

2009.07-2009.10   访问学者  德国Leibniz海洋研究所

2008.12-2018.12   副教授    全球最大的赌钱网(亚洲)集团有限公司

2005.08-2008.12   讲师       南京大学大气科学系

   

研究方向和研究兴趣:     

季风气候动力学与气候预测;极端气候异常与大气低频变率;海气相互作用;全球气候变化;大气数值模拟   

   

承担课程:

数值天气预报(本科生专业核心课程)

气象数据分析与绘图(本科生专业选修课程) 

 

主持与参加的主要项目:

[1] 国家重点研发计划“重点研发计划项目政府间国际科技创新合作专项”北极和青藏高原加速变暖的过程及其对欧亚气候的协同影响(2022YFE0106600)(参加),2022-2026452

[2] 国家重点研发计划重大自然灾害监测预警与防范重点专项“1030 天极端天气过程可预报性及预报理论与方法研究第三课题“1030 天极端天气的预报能力评估及可预报性研究课题(2018YFC1505803)(主持),2018.12-2021.11352

[3] El Nino次年夏季东亚降水异常的多样性及其形成机制41775074, 国家自然科学基金面上项目(主持),2018.1-2021.1268

[4] 东亚气候变异动力学(41621005),国家自然科学基金创新研究群体项目(参加),2017.1-2022.121200

[5] “大气瞬变涡旋反馈在中纬度海气耦合动力过程中的作用41330420),国家自然科学基金重点项目(参加),2014.1-2018.12280

[6] 1997/98 2015/16 两次超强El Nino 事件对东亚气候异常影响的差异及其机理研究020714380035国际科技合作促进项目(主持),2017.1-2017.12

[7] 东亚与南亚夏季风年际关系的物理机制020714380011),国际科技合作促进项目(主持),2015.9-2016.9

[8] “北太平洋冬季风暴轴异常对西风急流南北位置变动的维持机理41275068),国家自然科学基金面上项目(参加)2013.1-2016.12

[9] “我国持续性重大天气异常形成机理与预测理论和方法研究第三课题复杂下垫面强迫和海陆气相互作用对我国持续性重大天气异常影响的物理过程研究2012CB417203),国家重点基础研究发展计划(973计划)(参加)2012.1-2016.12

[10] “南亚夏季风降水年际变异影响东亚夏季降水的机理研究41275069),国家自然科学基金面上项目(主持),2013.1-2016.12

[11] “太平洋年代际海温变化在ENSO与东亚夏季风年际关系中的作用研究40705028),国家自然科学基金青年基金项目(主持),2008.1-2010.12

[12] “全球变暖对ENSO与东亚夏季风关系的影响” ,中国科学院知识创新工程大气所联合创新青年学者计划(主持),2007.4-2009.4

[13] “ENSO在其当年和次年夏季造成我国降水异常型相反的机理研究”, 高等学校博士学科点专项科研基金-新教师基金课题,(主持),2008.1-2010.12

[14] “不同增暖类型的ENSO事件对东亚夏季风的影响 LASG开放课题(主持),2007.3-2009.3

[15] “大气对中纬度北太平洋海温异常的响应结构”, 南京大学人才引进培养基金项目(主持), 2005.11-2007.11

 

发表论文:

[1] 朱益民,孙旭光,陈晓颖小波分析在长江中下游旱涝气候预测中的应用解放军理工大学学报(自然科学版),200346):90-93

[2] 杨修群,谢倩,朱益民,孙旭光,郭燕娟华北降水年代际变化特征及相关的海气异常型地球物理学报,2005484),789-797 (SCI)

[3] 徐桂玉,杨修群,孙旭光华北降水年代际、年际变化特征与北半球大气环流的联系地球物理学报,200548(3)511-518 (SCI)

[4] XU Guiyu, YANG Xiuqun, SUN Xuguang. Interdecadal and interannual variation characteristics of precipitation in North China and its relation with the Northern Hemisphere atmospheric circulations. Chinese Journal of Geophysics, 2005, 48(3), 566-574

[5] 孙旭光*,杨修群. El Nino演变不同阶段东亚大气环流年际异常型的数值模拟地球物理学报,200548(3)501-510 (SCI)

[6] SUN Xuguang, YANG Xiuqun. Simulated interannual anomalous atmospheric circulation patterns over East Asia during different stages of an ENSO cycle. Chinese Journal of Geophysics, 2005, 48(3), 555-565

[7] 魏应植,吴陈锋,孙旭光福建台风灾害特征及其预防对策研究海洋科学,20063010):9-16

[8] 孙旭光*杨修群. El Nino对东亚气候异常影响的数值模拟. 海洋学报, 200729(5)21-30

[9] 朱益民,杨修群,陈晓颖,赵珊珊,孙旭光. ENSO与中国夏季年际气候异常关系的年代际变化热带气象学报,2007232):105-116

[10] Zhu Yimin, Yang Xiuqun, Chen Xiaoying, Zhao Shanshan, Sun Xuguang. Interdecadal variation of the relationship between ENSO and summer interannual climate variability in China. Journal of Tropical Meteorology, 2007, 13(2): 132-136 (SCI)

[11] 赵珊珊,周天军,杨修群,孙旭光,朱益民. 1976/77年前后热带印度洋海表温度年际异常的变化大气科学,2008322),371379

[12] 朱益民,杨修群,俞永强,赵珊珊,孙旭光,谭言科. FGOALS_g快速耦合模式模拟的北太平洋年代际变率地球物理学报,2008511),5869 (SCI)

[13] 孙旭光*,杨修群,朱益民,赵珊珊,刘冬晴不同增暖类型El Nino事件对次年夏季东亚大气环流影响的数值模拟. LASG简报,200824),1819

[14] 邹用昌,杨修群,潘志祥,孙旭光,房佳蓓,廖玉芳. CO2倍增对我国东部极端降水的影响.气候变化研究进展,2008, 4(2)84-89

[15] 邹用昌,杨修群,孙旭光,汤剑平,房佳蓓,廖玉芳我国极端降水过程频数时空变化的季节差异南京大学学报(自然科学),2009451),98109

[16] 胡邦辉,张惠君,杨修群,孙旭光. 基于回归模型的局部线性估计云量预报方法研究.南京大学学报(自然科学),2009451),89-97

[17] Shanshan Zhao, Tianjun Zhou, Xiuqun Yang, Yimin Zhu, Yanke Tan, Xuguang Sun. (2011) Interdecadal change of the relationship between the tropical Indian ocean dipole mode and the summer climate anomaly in China. Acta Meteorologica Sinica 25:2, 129-141 SCI

[18] Xuguang Sun, Richard J. Greatbatch, Wonsun Park, Mojib Latif. (2010) Two major modes of variability of the East Asian summer monsoon. Quarterly Journal of the Royal Meteorological Society 136:649, 829-841 SCI

[19] 杨国杰,任雪娟,孙旭光,向洋大气瞬变强迫对冬季西太平洋遥相关型影响的初步探讨气象科学,201030(3): 285-291

[20] 李欣,杨修群,汤剑平,孙旭光,房佳蓓. WRF/NCAR 模拟的夏季长三角城市群区域多城市热岛和地表能量平衡.气象科学,201131(4) : 441-450

[21] 张璐,杨修群,汤剑平,房佳蓓,孙旭光 夏季长三角城市群热岛效应及其对大气边界层结构影响的数值模拟. 气象科学,201131( 4) :431-440

[22] Qiong Jin, Xiu-Qun Yang, Xu-Guang Sun, Jia-Bei Fang. (2013) East Asian summer monsoon circulation structure controlled by feedback of condensational heating. Climate Dynamics, DOI 10.1007/s00382-012-1620-9 SCI

[23] Richard Greatbatch, Xuguang Sun, Xiuqun Yang. (2013) Impact of variability in the Indian Summer Monsoon on the East Asian Summer Monsoon. Atmospheric Science Letters, 14, 14-19 SCI

[24] Hui Ding, Richard Greatbatch, Wonsun Park, Mojib Latif, Vladimir Semenov, Xuguang SUN. (2013) The variability of the East Asian Summer Monsoon and its relationship to ENSO in a partially coupled climate model. Climate Dynamics, DOI 10.1007/s00382-012-1642-3. SCI

[25] Xuejuan Ren, Xiu-Qun Yang, Xuguang Sun, 2013, Zonal oscillation of western Pacific subtropical high and subseasonal SST variations during Yangtze persistent heavy rainfall events, Journal of Climate, doi10.1175/JCLI-D-12-00861.1. SCI

[26] 曹鑫,任雪娟,孙旭光江淮流域夏季持续性强降水的低频特征分析气象科学,201333(4): 362-370

[27] Xiaomei Wang, Xuguang Sun*, Jianping Tang, Xiuqun Yang, 2015: Urbanization-induced regional warming in Yangtze River Delta: potential role of anthropogenic heat release. International Journal of Climatology, 35: 4417-4430. DOI: 10.1002/joc.4296 SCI

[28] 姜贵祥,孙旭光*. 格点降水资料在中国东部夏季降水变率研究中的适用性. 气象科学,201636(4): 448-456.

[29] Xuguang Sun*, Guixiang Jiang, Xuejuan Ren, Xiu-Qun Yang, 2016: Role of subseasonal oscillation in the persistent extreme precipitation over Yangtze River basin during June 1998. Journal of Geophysical Research-Atmospheres, 121, 10453-10469, doi: 10.1002/2016JD025077 SCI

[30] Sun, X., M. Xue, J. Brotzge, R. A. McPherson, X.-M. Hu, and X.-Q. Yang (2016), An evaluation of dynamical downscaling of Central Plains summer precipitation using a WRF-based regional climate model at a convection-permitting 4 km resolution, J. Geophys. Res. Atmos., 121, 13801-13825, doi:10.1002/2016JD024796. SCI

[31] 夏杨,孙旭光*,闫燕,封维扬,黄芳,杨修群2017,全球变暖背景下ENSO特征的变化,科学通报,62: 1738-1751. doi: 10.1360/N972016-01225. (EI)

[32] 王妍凤,孙旭光*,杨修群.2017, 积雪在El Nino影响东亚夏季气候异常中的作用. 地球物理学报,609):3325-3337. doi:10.6038/cjg20170905. SCI

[33] Liying Wang, Xiu-Qun Yang, Dejian Yang, Qian Xie, Jiabei Fang, Xuguang Sun, 2017, Two typical modes in the variabilities of wintertime North Pacific basin-scale oceanic fronts and associated atmospheric eddy-driven jet, Atmospheric Science Letters,18, 373-380. doi: 10.1002/asl.766 SCI

[34] Cuijiao Chu, Xiu-Qun Yang, Xuguang Sun, Dejian Yang, Yiquan Jiang, Tao Feng, Jin Liang, 2017, Effect of the tropical Pacific and Indian Ocean warming since the late 1970s on wintertime Northern Hemispheric atmospheric circulation and East Asian climate interdecadal changes, Climate Dynamics (online), doi: 10.1007/s00382-017-3790-y SCI

[35] Yiquan Jiang, Xiu-Qun Yang, Xiaohong Liu, Dejian Yang, Xuguang Sun, Minghuai Wang, Aijun Ding, Tijian Wang, and Congbin Fu, 2017: Anthropogenic aerosol effects on East Asian winter monsoon: The role of black carbon-induced Tibetan Plateau warming, Journal of Geophysical Research - Atmospheres, 122(11),5883-5902, doi: 10.1002/2016JD026237. SCI

[36] Wang P.Tang J.Sun X.Wang S.Wu J.Dong X. & Fang J., 2017Heatwaves in China: definitions, leading patterns and connections to large-scale atmospheric circulation and SSTsJournal of Geophysical Research: Atmospheres122, 10679-10699. 10.1002/2017JD027180 SCI

[37] Wang, T., X. Yang, J. Fang, X. Sun, and X. Ren, 2017: Role of air-sea interaction in the 30–60 day boreal summer intraseasonal oscillation over western North Pacific. Journal of Climate, 31, 1653-1680, doi:10.1175/JCLI-D-17-0109.1 SCI

[38] Zhiqi Zhang, Xuguang Sun*, Xiu-Qun Yang*, 2018: Understanding the interdecadal variability of East Asian summer monsoon precipitation: Joint influence of three oceanic signals, Journal of Climate, 31, 5485–5506, DOI: 10.1175/JCLI-D-17-0657.1

[39] Yang, D., Yang, X.-Q., Ye, D., Sun, X., Fang, J., Chu, C., et al. 2018. On the relationship between probabilistic and deterministic skills in dynamical seasonal climate prediction. Journal of Geophysical Research: Atmospheres, 123, 5261–5283. https://doi.org/10.1029/2017JD028002 SCI

 [40] Jianping Tang, Xuguang Sun, Pinhong Hui, et al., 2018: Effects of Spectral Nudging on Precipitation Extremes and Diurnal Cycle over CORDEX East Asia domain, International Journal of Climatology, 38(13), 4903-4923, DOI:10.1002/joc.5706 SCI

[41] Sun, X.*, Tao, L., & Yang, X.-Q., 2018: The influence of oceanic stochastic forcing on the atmospheric response to midlatitude North Pacific SST anomalies. Geophysical Research Letters, 45(17), 9297-9304. https:// doi.org/10.1029/2018GL078860 (SCI)

[42] 陈景丽, 孙旭光, 唐红昇, et al. 江苏省土壤湿度观测资料与再分析资料对比分析研究. 气象科学, 2018, 38(04):105-112.

[43] Yang, D., Yang, X.‐Q., Ye, D., Sun, X., Fang, J., Chu, C., et al., 2019: Reply to comment by Michael K. Tippett on “on the relationship between probabilistic and deterministic skills in dynamical seasonal climate prediction”. Journal of Geophysical Research: Atmospheres, 124. https://doi.org/10.1029/2019JD030289 (SCI)

[44] Fu, X., Yang, X.‐Q., & Sun, X., 2019: Spatial and diurnal variations of summer hourly rainfall over three super city clusters in eastern China and their possible link to the urbanization. Journal of Geophysical Research: Atmospheres, 124, 5445– 5462. https://doi.org/10.1029/2019JD030474

[45] Wang, P., Tang, J.*, Sun, X.*, Liu, J., Fang, J., 2019, Spatiotemporal characteristics of heat waves over China in regional climate simulations within the CORDEX-EA project. Climate Dynamics, 52: 799-818. https://doi.org/10.1007/s00382-018-4167-6

[46] Zhao, Y., Shi, J., Shi, S., Ma, X., Zhang, W., Wang, B., Sun, X., Lu, H., and Bräuning, A., 2019: Early summer hydroclimatic signals are captured well by tree-ring earlywood width in the eastern Qinling Mountains, central China. Climate of the Past, 15, 1113-1131, https://doi.org/10.5194/cp-15-1113-2019

[47] Guo, Z. Y., Fang, J., Sun, X. G.*, Yang, Y., Tang, J. P., 2019: Sensitivity of summer precipitation simulation to microphysics parameterization over eastern China: Convection-permitting regional climate simulation. Journal of Geophysical Research: Atmospheres,124(16):9183-9204. doi: 10.1029/2019JD030295

[48] Tao, L. F., Sun, X. G.*, Yang, X.-Q., 2019: Asymmetric atmospheric responses to the midlatitude North Pacific SST anomalies. Journal of Geophysical Research: Atmospheres, 124(16):9222-9240. doi: 10.1029/2019JD030500

[49] Sun, X. G.*, Xu, Y. M., Zhang, Z. Q., and X.-Q. Yang, 2019: The tropical and extratropical-origin summer meridional teleconnections over East Asia. Climate Dynamics, 53(1): 721-735. https://doi.org/10.1007/s00382-018-04610-2

[50] Guo, Z. Y., Fang, J., Sun, X. G.*, Tang, J.*, Yang, Y., Tang, J. P., 2020: Decadal long convection-permitting regional climate simulations over eastern China: evaluation of diurnal cycle of precipitation. Climate Dynamics, 54(3-4), 1329-1349. DOI: 10.1007/s00382-019-05061-z

[51] Tao, L. F., Yang, X.-Q., Fang, J. B., and Sun, X. G., 2020: PDO-related wintertime atmospheric anomalies over the midlatitude North Pacific: Local versus Remote SST forcing. Journal of Climate, 33: 6989-7010. DOI: 10.1175/JCLI-D-19-0143.1

[52] Shi, S. Y., Shi, J. F., Xu, C. X., Leavitt, S. W., Wright, W. E., Cai, Z. Y., Zhang, H. Y., Sun, X. G., Zhao, Y. S., Ma, X. Q., Zhang, W. J., Lu, H. Y., 2020: Tree-ring δ18O from Southeast China reveals monsoon precipitation and ENSO variability. Palaeogeography, Palaeoclimatology, Palaeoecology, 558: 109954. https://doi.org/10.1016/j.palaeo.2020.109954

[53] Yao, J. X., Sun, X. G.*, Tang, J. P., Ji, Y. Q., Xu, Y. M., Yang, X.-Q., 2020: Summer regional pentad heat wave in eastern China and their possible causes. Frontiers in Earth Science, 8: 598027. doi: 10.3389/feart.2020.598027

[54] Wang T, Chu C, Sun X and Li T, 2020, Improving Real-Time Forecast of Intraseasonal Variabilities of Indian Summer Monsoon Precipitation in an Empirical Scheme. Fronters in Earth Science, 8: 577311. doi: 10.3389/feart.2020.577311

[55] Feng, T., X. Yang, X. Sun, D. Yang, and C. Chu, 2020: Reexamination of the Climatology and Variability of the Northwest Pacific Monsoon Trough Using a Daily Index. Journal of Climate33, 5919-5938, https://doi.org/10.1175/JCLI-D-19-0459.1.

[56] 邵国云,孙旭光*2021: 西北太平洋多台风事件气候特征及其可能形成机制. 气象科学, 41(6): 728-738, doi: 10.12306/2020jms.0066.

[57] Ji, Y. Q., Sun, X. G.*, Xu, Y. M., Yao, J. X., Yang, X.-Q., 2021: Summer regional pentad extreme precipitation in eastern China and their possible causes. Frontiers in Earth Science, 8: 598025. doi: 10.3389/feart.2020.598025

[58] Wang, L. C., X. G. Sun*, X. Q. Yang, et al., 2021: Contribution of water vapor to the record-breaking extreme Meiyu rainfall along the Yangtze River valley in 2020. Journal of Meteorological Research, 35(4), 557–570, doi:10.1007/s13351-021-1030-1.

[59] Yang, D. J., Y. M. Tang, X.-Q. Yang, D. Ye, T. Liu, T. Feng, X. Yan, X. G. Sun and Y. C. Zhang, 2021: A theoretical relationship between probabilistic relative operating characteristic skill and deterministic correlation skill in dynamical seasonal climate prediction. Climate Dynamics, 56: 3909-3932. https://doi.org/10.1007/s00382-021-05678-z.

[60] Sun, L. Y., X.-Q. Yang, L. F. Tao, J. B. Fang, X. G. Sun, 2021: Changing impact of ENSO events on the following summer rainfall in eastern China since the 1950s. Journal of Climate, 34, 8105-8123. Doi: 10.1175/JCLI-D-21-0018.1.

[61] 王昱, 杨修群, 孙旭光, 房佳蓓, 陶凌峰, 张志琦, 2021: 一种基于全球动力模式和SMART原理结合的统计降尺度区域季节气候预测方法.气象科学, 41(5): 569-583

[62] Sang, X. Z., X.-Q. Yang, L. F. Tao, J. B. Fang, X. G. Sun, 2022: Decadal changes of wintertime poleward heat and moisture transport associated with the amplified Arctic warming. Climate Dynamics, 58, 137-159. https://doi.org/10.1007/s00382-021-05894-7.

[63] Cai, D., Tao, L., Yang, XQ, Sang, XZ, Fang, JB, Sun, XG, Wang, WP, Yan, HM, 2022: A climate perspective of the quasi-stationary front in southwestern China: structure, variation and impact. Climate Dynamics, https://doi.org/10.1007/s00382-022-06151-1

[64] Sang, X. Z., X.-Q. Yang, L. F. Tao, J. B. Fang, X. G. Sun, 2022: Evaluation of synoptic eddy activities and their feedback onto the midlatitude jet in five atmospheric reanalyses with coarse versus fine model resolutions. Climate Dynamics, 58: 1363-1381.

[65] Xue, W., Sun, X.*, & Yang, X.-Q., 2022: Boreal summer negative correlation relationship between interannual SST and precipitation anomalies in the tropical and subtropical western North Pacific. Journal of Geophysical Research: Atmospheres, 127, e2021JD035231. https://doi.org/10.1029/2021JD035231

[66] Tao, L. F., Fang, J. B., Yang, X.-Q., Sun, X. G., & Cai, D. P., 2022: Midwinter reversal of the atmospheric anomalies caused by the North Pacific mode-related air-sea coupling. Geophysical Research Letters, 49(20), https://doi.org/10.1029/2022GL100307

[67] Xu, Y., Sun, X.*, & Yang, X.-Q. (2022). Boreal summer intraseasonal meridional oscillations over East Asia and their influences on precipitation. Journal of Geophysical Research: Atmospheres, 127, e2021JD035779. https://doi.org/10.1029/2021JD035779

[68] Xu, S. Q., Fang, Y. H., Lin, Y. T., Sun, X. G.*, Yang, X. Y., & Gong, Z. Q., 2023: Enhanced impact autumn north tropical Atlantic sea surface temperature anomalies on subsequent winter snowfall in Northeast China after 2001. Journal of Climate, 36(2), 663-675. DOI: 10.1175/JCLI-D-22-0333.1

[69] Shen, Z.; Xu, T.; Liu, G.; Sun, X.*; Yang, X.-Q, 2023: Changes of Water Vapor Budget over East Asia in Response to 4xCO2 Concentration Forcing. Sustainability, 15, 313. https://doi.org/10.3390/su15010313

[70] Tao, L. F., Sun, X. G.*, Yang, X.-Q., Fang, J. B., & Zhang, Z. Q., 2023: Effect of oceanic stochastic forcing on wintertime atmospheric decadal variability over midlatitude North Pacific, Journal of Geophysical Research: Atmospheres, 128, e2022JD037594. DOI:10.1029/2022JD037594

[71] Liu, Y. L., Sun, X. G.*, Yang, X.-Q., 2023: Stage-dependent influence of PDO on interdecadal summer precipitation anomalies in eastern China. Climate Dynamics, DOI : 10.1007/s00382-023-06667-0

[72] Li, W., Yang, X., Fang, J., Tao, L., & Sun, X., 2023: Asymmetric boreal summer intraseasonal oscillation events over the western North Pacific and their impacts on East Asian precipitation, Journal of Climate, 36, 2645-2661. DOI: https://doi.org/10.1175/JCLI-D-22-0750.1

 

获批专利

[1] “基于主要SVD模态建模的中国季节气候预测方法201710441739.X),国家发明专利,发明人:孙旭光,杨修群

 

获批软件著作权:

[1] 杨修群, 孙旭光,张志琦,王昱,陶凌峰. 基于SMART方法建模的中国季节气候预测系统[简称:SMART-PSM-SPS-CN] V1.0. 登记号:2020SR1107243.

[2] 杨修群,王昱,孙旭光,陶凌峰,张志琦. SMART动力-统计结合中国季节气候预测系统[简称:SMART-DSM-SPS-CN] V1.0. 登记号:2020SR1107161.

[3] 杨修群,陶凌峰,孙旭光,张志琦,王昱. 基于旬倾向距平物理统计模型的泛长三角地区延伸期预测系统[简称:SMART-PSM-EPS-YRD] V1.0. 登记号:2020SR1107153.

[4] 杨修群, 孙旭光,张志琦,王昱,陶凌峰. 华北地区SMART季节气候预测系统[简称:SMART-PSM-SPS-NC] V1.0. 登记号:2020SR1662489.

[5] 杨修群,王昱,孙旭光,陶凌峰,张志琦. 基于动力模式的华北地区SMART统计降尺度季节气候预测系统[简称:SMART-DSD-SPS-NC] V1.0. 登记号:2020SR1662526.

[6] 杨修群, 孙旭光,张志琦,王昱,陶凌峰. 华中地区SMART季节气候预测系统[简称:SMART-PSM-SPS-CC] V1.0. 登记号:2020SR1713442.

[7] 杨修群,王昱,孙旭光,陶凌峰,张志琦. 基于动力模式的华中地区SMART统计降尺度季节气候预测系统[简称:SMART-DSD-SPS-CC] V1.0. 登记号:2020SR1713441.

 

出版教材:

[1]《数值天气预报》(第2版),沈桐立,田永祥,陈德辉,沈新勇,孙旭光,梁旭东,陆维松编著,20155月,气象出版社,十二五江苏省高等学校重点教材、普通高等教育十一五国家级规划教材。

[2] 《数值天气预报》,沈桐立,田永祥,陆维松,陈德辉,沈新勇,孙旭光编著,201012月,气象出版社,普通高等教育十一五国家级规划教材。

 

 

Sustainability专刊客座编辑:

Call for Paper: [Sustainability] (IF: 3.251, ISSN: 2071-1050)—Special Issue The Impacts of East Asian Monsoon on Precipitation: Observation, Mechanism and Prediction

https://www.mdpi.com/journal/sustainability/special_issues/Monsoon_Precipitation

This Special Issue aims to gather new innovative results on the impact of the East Asian monsoon on precipitation from observations, mechanisms, and predictions, and will focus on the subseasonal to interdecadal variabilities of the East Asian monsoon and its related precipitation anomalies, attempting to reveal new phenomena and deepen our understanding of the air–sea interactions and tropical–extratropical interactions involved. Moreover, the simulation and prediction of the East Asian monsoon and its impact on precipitation will be evaluated, and some possible ways to improve the simulation and prediction skills of subseasonal to interdecadal East Asian monsoon precipitation variabilities will also be explored. A good understanding and the accurate prediction of East Asian monsoon variabilities and their impacts on precipitation are essential to alleviate the effects of meteorological disasters, and people will benefit greatly from such specific studies; for example, drought and flood early warning and risk mitigation planning, scientific and reasonable development and utilization of water resources, etc., which are closely related to the journal scope of the environmental sustainability of human beings.

  • 南京大学仙林校区大气科学楼
    江苏省南京市栖霞区仙林大道163号
    210023