丁爱军和聂玮团队最新成果揭示一氧化氮对生物源高氧化态有机物生成的非线性机制


发布时间:2023-06-13浏览次数:10


高氧化态有机物(HOM)是挥发性有机物(VOCs)氧化生成二次有机气溶胶(SOA)并贡献新粒子生成及增长的关键中间产物。但鉴于其极低的浓度,长期以来难以被有效测量和认知。我院丁爱军教授和聂玮教授团队与赫尔辛基大学Markku Kulmala院士团队自2014年起合作探索高氧化态有机物研究方法与思路,并致力于理解人类活动对高氧化态有机物生成的影响。

图1 NO对生物源HOM生成的非线性影响机制

团队先后在北欧森林地区、我国东部超大城市群、青藏高原等多个地区进行HOM的高质量观测(Yan et al., 2016; Liu et al., 2021; Xu et al., 2021; Nie et al., 2022; Liu et al., 2023),逐渐确认了氮氧化物(NOx)与有机过氧自由基(RO2)的相互作用很可能深刻影响着HOM的生消,但对其内在机制的认知却非常匮乏。鉴于此,团队与欧盟大型烟雾箱研究计划CLOUD合作,通过实现对VOCs前体物(单萜烯)、一氧化氮(NO)和二氧化氮(NO2)的精准控制并开展数值模拟,研究了NOx对HOM生成以及进一步对新粒子生成及增长的影响机制。研究发现NO即使在极低的浓度(低于80 ppt)也可以对HOM的生成有重要影响。一方面,NOx会诱发产生大量的高氧化态有机硝酸酯(CHON-HOM),并抑制高氧化态有机物二聚体的生成(HOM-dimer)(Yan et al., 2020);另一方面,低浓度NO可以调节高氧化态过氧自由基(HOM-RO2)的源汇平衡并促进烷氧自由基(RO)的生成和自氧化,最终导致HOM的整体产率升高(Nie et al., 2023)。相关结果修正了传统关于NO会单向抑制HOM生成的认知,明确了NO对HOM生成的非线性影响。结果表明NOx会抑制新粒子生成及初始增长,但对颗粒物的后续增长及二次有机气溶胶生成的影响是非线性的。上述实验室研究结果也得到了北欧森林地区以及南京城市地区的观测验证,确认了生物源HOM产率是大约在2%到6.5%之间的变动值。NO诱发的RO自氧化过程保证了高浓度NOx环境下HOM仍然具有较为可观的生成量。

图2 北方森林站点(SMEAR II)不同浓度NOx条件下HOM的产率变化

该成果以题为“NO at low concentration can enhance the formation of highly oxygenated biogenic molecules in the atmosphere”于2023年6月8日在线发表在《自然·通讯》(Nature Communications)。我院聂玮教授和鄢超副教授为论文共同第一作者,丁爱军教授和聂玮教授为共同通讯作者。赫尔辛基大学、欧洲核子研究中心、卡耐基梅隆大学、瑞典伦德大学等为该工作的合作单位。该研究受到国家自然科学基金重大计划集成项目、重点国际合作项目、面上项目和江苏省气候变化协同创新中心的资助。


相关论文:

Nie, W., Yan, C., Yang, L., Roldin, P., Liu, Y., Vogel, A. L., Molteni, U., Stolzenburg, D., Finkenzeller, H., Amorim, A., Bianchi, F., Curtius, J., Dada, L., Draper, D. C., Duplissy, J., Hansel, A., He, X.-C., Hofbauer, V., Jokinen, T., Kim, C., Lehtipalo, K., Nichman, L., Mauldin, R. L., Makhmutov, V., Mentler, B., Mizelli-Ojdanic, A., Petäjä, T., Quéléver, L. L. J., Schallhart, S., Simon, M., Tauber, C., Tomé, A., Volkamer, R., Wagner, A. C., Wagner, R., Wang, M., Ye, P., Li, H., Huang, W., Qi, X., Lou, S., Liu, T., Chi, X., Dommen, J., Baltensperger, U., El Haddad, I., Kirkby, J., Worsnop, D., Kulmala, M., Donahue, N. M., Ehn, M., and Ding, A.: NO at low concentration can enhance the formation of highly oxygenated biogenic molecules in the atmosphere, Nature Communications, 14, 3347, 10.1038/s41467-023-39066-4, 2023.

Yan, C., Nie, W., Vogel, A. L., Dada, L., Lehtipalo, K., Stolzenburg, D., Wagner, R., Rissanen, M. P., Xiao, M., Ahonen, L., Fischer, L., Rose, C., Bianchi, F., Gordon, H., Simon, M., Heinritzi, M., Garmash, O., Roldin, P., Dias, A., Ye, P., Hofbauer, V., Amorim, A., Bauer, P. S., Bergen, A., Bernhammer, A.-K., Breitenlechner, M., Brilke, S., Buchholz, A., Mazon, S. B., Canagaratna, M. R., Chen, X., Ding, A., Dommen, J., Draper, D. C., Duplissy, J., Frege, C., Heyn, C., Guida, R., Hakala, J., Heikkinen, L., Hoyle, C. R., Jokinen, T., Kangasluoma, J., Kirkby, J., Kontkanen, J., Kürten, A., Lawler, M. J., Mai, H., Mathot, S., Mauldin, R. L., Molteni, U., Nichman, L., Nieminen, T., Nowak, J., Ojdanic, A., Onnela, A., Pajunoja, A., Petäjä, T., Piel, F., Quéléver, L. L. J., Sarnela, N., Schallhart, S., Sengupta, K., Sipilä, M., Tomé, A., Tröstl, J., Väisänen, O., Wagner, A. C., Ylisirniö, A., Zha, Q., Baltensperger, U., Carslaw, K. S., Curtius, J., Flagan, R. C., Hansel, A., Riipinen, I., Smith, J. N., Virtanen, A., Winkler, P. M., Donahue, N. M., Kerminen, V.-M., Kulmala, M., Ehn, M., and Worsnop, D. R.: Size-dependent influence of NOx on the growth rates of organic aerosol particles, Science Advances, 6, eaay4945, 10.1126/sciadv.aay4945, 2020.

Nie, W., Yan, C., Huang, D. D., Wang, Z., Liu, Y., Qiao, X., Guo, Y., Tian, L., Zheng, P., Xu, Z., Li, Y., Xu, Z., Qi, X., Sun, P., Wang, J., Zheng, F., Li, X., Yin, R., Dallenbach, K. R., Bianchi, F., Petäjä, T., Zhang, Y., Wang, M., Schervish, M., Wang, S., Qiao, L., Wang, Q., Zhou, M., Wang, H., Yu, C., Yao, D., Guo, H., Ye, P., Lee, S., Li, Y. J., Liu, Y., Chi, X., Kerminen, V.-M., Ehn, M., Donahue, N. M., Wang, T., Huang, C., Kulmala, M., Worsnop, D., Jiang, J., and Ding, A.: Secondary organic aerosol formed by condensing anthropogenic vapours over China’s megacities, Nature Geoscience, 15, 255-261, 10.1038/s41561-022-00922-5, 2022.

Xu, Z. N., Nie, W., Liu, Y. L., Sun, P., Huang, D. D., Yan, C., Krechmer, J., Ye, P. L., Xu, Z., Qi, X. M., Zhu, C. J., Li, Y. Y., Wang, T. Y., Wang, L., Huang, X., Tang, R. Z., Guo, S., Xiu, G. L., Fu, Q. Y., Worsnop, D., Chi, X. G., and Ding, A. J.: Multifunctional Products of Isoprene Oxidation in Polluted Atmosphere and Their Contribution to SOA, Geophysical Research Letters, 48, e2020GL089276, https://doi.org/10.1029/2020GL089276, 2021.

Liu, Y., Nie, W., Li, Y., Ge, D., Liu, C., Xu, Z., Chen, L., Wang, T., Wang, L., Sun, P., Qi, X., Wang, J., Xu, Z., Yuan, J., Yan, C., Zhang, Y., Huang, D., Wang, Z., Donahue, N. M., Worsnop, D., Chi, X., Ehn, M., and Ding, A.: Formation of condensable organic vapors from anthropogenic and biogenic volatile organic compounds (VOCs) is strongly perturbed by NOx in eastern China, Atmos. Chem. Phys., 21, 14789-14814, 10.5194/acp-21-14789-2021, 2021.

Liu, Y., Liu, C., Nie, W., Li, Y., Ge, D., Chen, L., Zhu, C., Wang, L., Zhang, Y., Liu, T., Qi, X., Wang, J., Huang, D., Wang, Z., Yan, C., Chi, X., and Ding, A.: Exploring condensable organic vapors and their co-occurrence with PM2.5 and O3 in winter in Eastern China, Environmental Science: Atmospheres, 10.1039/D2EA00143H, 2023.

Yan, C., Nie, W., Äijälä, M., Rissanen, M. P., Canagaratna, M. R., Massoli, P., Junninen, H., Jokinen, T., Sarnela, N., Häme, S. A. K., Schobesberger, S., Canonaco, F., Yao, L., Prévôt, A. S. H., Petäjä, T., Kulmala, M., Sipilä, M., Worsnop, D. R., and Ehn, M.: Source characterization of highly oxidized multifunctional compounds in a boreal forest environment using positive matrix factorization, Atmos. Chem. Phys., 16, 12715-12731, 10.5194/acp-16-12715-2016, 2016.


  • 南京大学仙林校区大气科学楼
    江苏省南京市栖霞区仙林大道163号
    210023